S-functions, reductions and hodograph solutions of the r th dispersionless modified KP and Dym hierarchies

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 3711191
(http://iopscience.iop.org/0305-4470/37/46/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.65
The article was downloaded on 02/06/2010 at 19:44

Please note that terms and conditions apply.

S-functions, reductions and hodograph solutions of the r th dispersionless modified KP and Dym hierarchies

Manuel Mañas
Departamento de Física Teórica II, Universidad Complutense, 28040-Madrid, Spain
E-mail: manuel@darboux.fis.ucm.es

Received 13 May 2004, in final form 6 September 2004
Published 3 November 2004
Online at stacks.iop.org/JPhysA/37/11191
doi:10.1088/0305-4470/37/46/007

Abstract

We introduce an S-function formulation for the recently found r th dispersionless modified KP and r th dispersionless Dym hierarchies, giving also a connection of these S-functions with the Orlov functions of the hierarchies. Then, we discuss a reduction scheme for the hierarchies that together with the S-function formulation leads to hodograph systems for the associated solutions. We consider also the connection of these reductions with those of the dispersionless KP hierarchy and with hydrodynamic-type systems. In particular, for the one-component and two-component reduction we derive, for both hierarchies, ample sets of examples of explicit solutions.

PACS number: 02.30.Ik

1. Introduction

Dispersionless integrable hierarchies, which are an active line of research in the theory of integrable systems, originate from several sources. Let us mention here the pioneering work of Kodama and Gibbons [11, 12] on the dispersionless KP, of Kupershimdt on the dispersionless modified KP [16] and the important work of Tsarev on the role of Riemann invariants and hodograph transformations [7]. Another approach is that of Takasaki and Takabe [20-22] which gave the Lax formalism, additional symmetries, twistor formulation of the dispersionless KP and dispersionless Toda hierarchies.

It is also worthwhile to mention the role of dispersionless systems in topological field theories, see $[15,3]$. More recent progress appears in relation to the theory of conformal maps [8, 23], quasiconformal maps and $\bar{\partial}$-formulation [13], additional symmetries [19] and twistor equations [10], on hodograph equations for the Boyer-Finley equation [5] and its applications in general relativity, see also [4]. A new and interesting approach is presented in [6]. Finally, we remark the contribution to geometrical optics and the dispersionless Veselov-Novikov equation [14].

Recently, a new Poisson bracket and associated Lie algebra splitting was presented in [1] to construct new dispersionless integrable hierarchies, as the r th modified dispersionless KP hierarchy (r-dmKP) and the r th dispersionless Dym hierarchy (r-dDym), and latter on, see [2], the theory was further extended. Moreover, we studied in [17] the factorization of canonical transformations in these Poisson algebras to get a new hierarchy, the r th dispersionless Toda (r-dToda) hierarchy which contains the r-dmKP and r-dDym hierarchies as particular cases. For this new hierarchy we found additional symmetries and a new Miura map among the r-dmKP and the r-dDym hierarchies.

In this paper we extend to the r - dmKP and r-dDym hierarchies introduced in [1] our results on the theory of reductions of the dispersionless KP (dKP) hierarchy [18] and of the Whitham hierarchies [9]. The keystone is the S-function formulation of the integrable hierarchies and a reduction scheme that leads to hodograph systems characterizing solutions.

The layout of the paper is as follows. In section 2 we briefly present the r-dmKP and r-dDym hierarchies. Then, in section 3 we discuss the S functions for these hierarchies, firstly we present the S-functions as potentials of the hierarchies, then analyse their relation with the Orlov functions we introduced for these hierarchies in [17] and finally reformulate the integrable hierarchies in terms of S-functions. To end, in section 4 we discuss the reductions scheme, the associated hydrodynamic-type systems, hodograph systems and explicit examples of solutions for the one-component and two-component reductions.

We must underline that the additional symmetries found in [17] may be applied to the described solutions getting in this manner even more general sets of solutions.

2. The integrable hierarchies

The hierarchies we shall consider in this paper were introduced in [1] within the Lax formalism as follows. The setting needs the Lie algebra \mathfrak{g} of Laurent series $H(p, x):=\sum_{n \in \mathbb{Z}} u_{n}(x) p^{n}$ in the variable $p \in \mathbb{C}$ with coefficients depending on the variable $x \in \mathbb{R}$, with Lie commutator given by the following Poisson bracket:

$$
\begin{equation*}
\left\{H_{1}, H_{2}\right\}=p^{r}\left(\frac{\partial H_{1}}{\partial p} \frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial x} \frac{\partial H_{2}}{\partial p}\right), \quad r \in \mathbb{Z} \tag{1}
\end{equation*}
$$

We shall use the following triangular-type splitting of \mathfrak{g} into Lie subalgebras:

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}_{>} \oplus \mathfrak{g}_{1-r} \oplus \mathfrak{g}_{<} \tag{2}
\end{equation*}
$$

where

$$
\mathfrak{g}_{\gtrless}:=\mathbb{C}\left\{u_{n}(x) p^{n}\right\}_{n \gtrless(1-r)}, \quad \mathfrak{g}_{1-r}:=\mathbb{C}\left\{u(x) p^{1-r}\right\},
$$

and therefore fulfil the following property:

$$
\left\{\mathfrak{g}_{\gtrless}, \mathfrak{g}_{1-r}\right\}=\mathfrak{g}_{\gtrless}
$$

2.1. The rth dispersionless modified KP hierarchy

If we define the Lie subalgebra $\mathfrak{g} \geqslant$ as

$$
\mathfrak{g}_{\geqslant}:=\mathfrak{g}_{1-r} \oplus \mathfrak{g}_{>}
$$

we have the direct sum decomposition of the Lie algebra \mathfrak{g} given by

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}_{<} \oplus \mathfrak{g} \geqslant, \tag{3}
\end{equation*}
$$

and the associated resolution of the identity into projectors

$$
1=P_{\geqslant}+P_{<} .
$$

Given a Lax function L of the form

$$
\begin{equation*}
L=p+u_{0}(x)+u_{1}(x) p^{-1}+u_{2}(x) p^{-2}+\cdots, \quad p \rightarrow \infty, \tag{4}
\end{equation*}
$$

we introduce

$$
\begin{equation*}
\Omega_{n}:=P_{\geqslant} L^{n+1-r}, \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

The r-dmKP hierarchy is the following set of Lax equations:

$$
\begin{equation*}
\frac{\partial L}{\partial t_{n}}=\left\{\Omega_{n}, L\right\}, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

where we have introduced an infinite set of time variables $\left\{t_{n}\right\}_{n=1}^{\infty}$.
Note that for $n=r-1, \Omega_{n}=P \geqslant 1$ is a constant function, and therefore $L_{t_{r-1}}=0$, i.e. the t_{r-1}-flow is trivial.

One easily deduces that the first equations of this hierarchy are
$u_{0, t_{1}}=(2-r) u_{1, x}+(2-r)(1-r) u_{0} u_{0, x}$,
$u_{1, t_{1}}=(2-r) u_{2, x}+(2-r)(1-r) u_{0} u_{1, x}+(2-r) u_{1} u_{0, x}$,
$u_{0, t_{2}}=(3-r) u_{2, x}+(3-r)(2-r)\left(u_{0} u_{1, x}+u_{0, x} u_{1}\right)+\frac{1}{2}(3-r)(2-r)(1-r) u_{0}^{2} u_{0, x}$.
This system, for $r \neq 2$, once u_{1} and u_{2} are expressed in terms of u_{0} leads to the r-dmKP equation for $u:=u_{0}$
$u_{t_{2}}=\frac{3-r}{(2-r)^{2}}\left(\partial_{x}^{-1} u\right)_{t_{1} t_{1}}+\frac{(3-r)(1-r)}{2-r} u_{x}\left(\partial_{x}^{-1} u\right)_{t_{1}}+\frac{r(3-r)}{2-r} u u_{t_{1}}-\frac{(3-r)(1-r)}{2} u^{2} u_{x}$.

2.2. The rth dispersionless Dym hierarchy

We now take the Lie subalgebra \mathfrak{g}_{\leqslant}as

$$
\mathfrak{g}_{\leqslant}:=\mathfrak{g}_{1-r} \oplus \mathfrak{g}_{<}
$$

and consider

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{g}_{>} \oplus \mathfrak{g}_{\leqslant}, \tag{9}
\end{equation*}
$$

and the corresponding resolution of the identity into projectors

$$
1=P_{>}+P_{\leqslant}
$$

Given the Lax function \tilde{L} as follows:

$$
\begin{equation*}
\tilde{L}=v p+v_{0}(x)+v_{1}(x) p^{-1}+\cdots, \quad p \rightarrow \infty \tag{10}
\end{equation*}
$$

we introduce

$$
\begin{equation*}
\tilde{\Omega}_{n}:=P_{>} \tilde{L}^{n+1-r}, \quad n=1,2, \ldots \tag{11}
\end{equation*}
$$

The r-dDym hierarchy is defined by

$$
\begin{equation*}
\frac{\partial \tilde{L}}{\partial t_{n}}=\left\{\tilde{\Omega}_{n}, \tilde{L}\right\}, \quad n=1,2, \ldots \tag{12}
\end{equation*}
$$

Note that, as in the previous case, for $n=r-1, \tilde{\Omega}_{n}=P_{>} 1$ is a constant function and therefore $\tilde{L}_{t_{r-1}}=0$, i.e. the t_{r-1}-flow is trivial.

The first equations of this hierarchy are

$$
\begin{align*}
& v_{t_{1}}=(2-r) v^{2-r} v_{0, x}, \quad v_{0, t_{1}}=(2-r) v^{1-r}\left(v v_{1}\right)_{x} \\
& v_{t_{2}}=(3-r) v^{2-r}\left(v v_{1}\right)_{x}+(3-r)(2-r) v^{2-r} v_{0} v_{0, x} \tag{13}
\end{align*}
$$

For $r \neq 2$ we may eliminate v_{0} and v_{1} in terms of v and obtain the r-dDym equation

$$
\begin{equation*}
v_{t_{2}}=\frac{3-r}{(2-r)^{2}} v^{r-1}\left(v^{2-r} \partial_{x}^{-1}\left(v^{r-2} v_{t_{1}}\right)\right)_{t_{1}} \tag{14}
\end{equation*}
$$

3. The S-functions for the r-dmKP and r-dDym hierarchies

In this section we shall consider relation (4) as a univalent map $p \mapsto L=L(p)$ and shall also use its inverse $L \mapsto p=p(L)$. We use the notation $t:=\left(t_{1}, t_{2}, \ldots\right)$.

3.1. The S-function as a potential

We introduce potential functions, $S(L, x, t)$ and $\tilde{S}(\tilde{L}, x, t)$, for
$\omega_{n}(L, x, \boldsymbol{t}):=\Omega_{n}(p(L, x, \boldsymbol{t}), x, \boldsymbol{t}) \quad$ and $\quad \tilde{\omega}_{n}(L, x, \boldsymbol{t}):=\tilde{\Omega}_{n}(p(\tilde{L}, x, \boldsymbol{t}), x, \boldsymbol{t})$.
First, we show that
Proposition 1. The following identities:

$$
\begin{array}{ll}
\frac{\partial \omega_{n}}{\partial t_{m}}=\frac{\partial \omega_{m}}{\partial t_{n}}, & \frac{\partial \omega_{n}}{\partial x}=p^{-r} \frac{\partial p}{\partial t_{n}} \\
\frac{\partial \tilde{\omega}_{n}}{\partial t_{m}}=\frac{\partial \tilde{\omega}_{m}}{\partial t_{n}}, & \frac{\partial \tilde{\omega}_{n}}{\partial x}=p^{-r} \frac{\partial p}{\partial t_{n}}
\end{array}
$$

hold.
Proof. Let us compute the t_{m}-derivative of ω_{n} :
$\frac{\partial \omega_{n}}{\partial t_{m}}=\frac{\partial \Omega_{n}(p(L, x, \boldsymbol{t}), x, \boldsymbol{t})}{\partial t_{m}}=\frac{\partial \Omega_{n}}{\partial p}(p(L, x, \boldsymbol{t}), x, \boldsymbol{t}) \frac{\partial p}{\partial t_{m}}(L, x, \boldsymbol{t})+\frac{\partial \Omega_{n}}{\partial t_{m}}(p(L, x, \boldsymbol{t}), x, \boldsymbol{t})$
and of

$$
p=p(L(p, x, \boldsymbol{t}), x, \boldsymbol{t})
$$

to get

$$
\begin{aligned}
\frac{\partial p}{\partial t_{m}} & =-\frac{\partial p}{\partial L} \frac{\partial L}{\partial t_{m}}=-\frac{\partial p}{\partial L}\left\{\Omega_{m}, L\right\}=-p^{r} \frac{\partial p}{\partial L}\left(\frac{\partial \Omega_{m}}{\partial p} \frac{\partial L}{\partial x}-\frac{\partial \Omega_{m}}{\partial x} \frac{\partial L}{\partial p}\right) \\
& =p^{r}\left(\frac{\partial \Omega_{m}}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial \Omega_{m}}{\partial x}\right)
\end{aligned}
$$

Thus, we deduce

$$
\frac{\partial \omega_{n}}{\partial t_{m}}=p^{r}\left(\frac{\partial \Omega_{n}}{\partial p} \frac{\partial \Omega_{m}}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial \Omega_{n}}{\partial p} \frac{\partial \Omega_{m}}{\partial x}\right)+\frac{\partial \Omega_{n}}{\partial t_{m}}
$$

and

$$
\frac{\partial \omega_{n}}{\partial t_{m}}-\frac{\partial \omega_{m}}{\partial t_{n}}=\left\{\Omega_{n}, \Omega_{m}\right\}+\frac{\partial \Omega_{n}}{\partial t_{m}}-\frac{\partial \Omega_{m}}{\partial t_{n}}=0
$$

as Ω_{n} has zero curvature. Observe that

$$
p^{-r} \frac{\partial p}{\partial t_{n}}=\frac{\partial \Omega_{n}}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial \Omega_{n}}{\partial x}=\frac{\partial \omega_{n}}{\partial x} .
$$

The proof for the remaining cases is performed as above.
Therefore, we have proven the local existence of functions $S(L, x, t)$ and $\tilde{S}(\tilde{L}, x, t)$ such that

$$
\begin{equation*}
\frac{\partial S}{\partial t_{n}}=\omega_{n}, \quad \frac{\partial S}{\partial x}=\Pi_{r}, \quad \frac{\partial \tilde{S}}{\partial t_{n}}=\tilde{\omega}_{n}, \quad \frac{\partial \tilde{S}}{\partial x}=\Pi_{r} \tag{15}
\end{equation*}
$$

where

$$
\Pi_{r}:= \begin{cases}\frac{p^{1-r}}{1-r}, & r \neq 1 \tag{16}\\ \log p, & r=1\end{cases}
$$

Note that

$$
p^{r} \frac{\mathrm{~d} \Pi_{r}}{\mathrm{~d} p}=1
$$

We refer to functions satisfying the above equations (15) as S-functions.

3.2. The S-functions and their connection with the Orlov functions

The so-called Orlov functions M and \tilde{M} are characterized by the following properties:
(1) They have an expansion of the form

$$
\begin{array}{ll}
M & =\cdots+(3-r) t_{2} L^{2}+(2-r) t_{1} L+x+w_{1}(x) L^{-1}+w_{2}(x) L^{-2}+\cdots, \\
\tilde{M} & =\cdots+(3-r) t_{2} \tilde{L}^{2}+(2-r) t_{1} \tilde{L}+\tilde{w}_{0}(x)+\tilde{w}_{1}(x) \tilde{L}^{-1}+\tilde{w}_{2}(x) \tilde{L}^{-2}+\cdots, \tag{17}\\
\tilde{L} \rightarrow \infty
\end{array}
$$

(2) They are canonically conjugated to L and \tilde{L}, respectively, i.e.,

$$
\begin{equation*}
\{L, M\}=L^{r} \quad \text { and } \quad\{\tilde{L}, \tilde{M}\}=\tilde{L}^{r} . \tag{18}
\end{equation*}
$$

Observe that when $r=1$ the relation $\{\tilde{L}, \tilde{M}\}=\tilde{L}$ implies that $\tilde{w}_{0}=x$.
(3) Satisfy the Lax equations

$$
\begin{equation*}
\frac{\partial M}{\partial t_{n}}=\left\{\Omega_{n}, M\right\}, \quad \frac{\partial \tilde{M}}{\partial t_{n}}=\left\{\tilde{\Omega}_{n}, \tilde{M}\right\} \tag{19}
\end{equation*}
$$

For $r \neq 1$ we shall show that the following functions:

$$
\begin{align*}
& S(L, x, \boldsymbol{t})=\cdots+t_{2} L^{3-r}+t_{1} L^{2-r}+\frac{x}{1-r} L^{1-r}+\sum_{n=1}^{\infty} S_{n}(x, \boldsymbol{t}) L^{-n+1-r}, \tag{20}\\
& S_{n}:=\frac{1}{-n+1-r} w_{n}(x, \boldsymbol{t}) \\
& \tilde{S}(\tilde{L}, x, \boldsymbol{t})=\cdots+t_{2} \tilde{L}^{3-r}+t_{1} \tilde{L}^{2-r}+\sum_{n=0}^{\infty} \tilde{S}_{n}(x, \boldsymbol{t}) \tilde{L}^{-n+1-r}, \tag{21}\\
& \tilde{S}_{n}:=\frac{1}{-n+1-r} \tilde{w}_{n}(x, \boldsymbol{t})
\end{align*}
$$

are S-functions. For $r=1$ these functions are
$S(L, x, \boldsymbol{t})=\cdots+t_{2} L^{2}+t_{1} L+x \log L+\sum_{n=1}^{\infty} S_{n}(x, \boldsymbol{t}) L^{-n}, \quad S_{n}:=-\frac{1}{n} w_{n}(x, \boldsymbol{t})$,
$\tilde{S}(\tilde{L}, x, \boldsymbol{t})=\cdots+t_{2} \tilde{L}^{2}+t_{1} \tilde{L}+x \log \tilde{L}+\sum_{n=1}^{\infty} \tilde{S}_{n}(x, \boldsymbol{t}) \tilde{L}^{-n}, \quad \tilde{S}_{n}:=-\frac{1}{n} \tilde{w}_{n}(x, \boldsymbol{t})$.
The role of S and \tilde{S} as generating functions is encoded in the following formulae:

$$
M=L^{r} \frac{\partial S}{\partial L}, \quad \tilde{M}=\tilde{L}^{r} \frac{\partial \tilde{S}}{\partial \tilde{L}}
$$

Proposition 2. The functions $S(L, x, t)$ and $\tilde{S}(\tilde{L}, x, t)$ given by (20) and (21) are S-functions, i.e.,

$$
\begin{array}{ll}
\frac{\partial S}{\partial x}=\Pi_{r}, & \frac{\partial \tilde{S}}{\partial x}=\Pi_{r}, \\
\frac{\partial S}{\partial t_{n}}=\omega_{n}, & \frac{\partial \tilde{S}}{\partial t_{n}}=\tilde{\omega}_{n}, \quad n=1,2, \ldots \tag{22}
\end{array}
$$

Proof. Let us prove that

$$
\frac{\partial S}{\partial x}=\Pi_{r}
$$

Observe that according to (17)

$$
\frac{\partial M}{\partial x}=\frac{\partial M}{\partial L} \frac{\partial L}{\partial x}+1+\sum_{n=1}^{\infty} \frac{\partial w_{n}}{\partial x} L^{-n}
$$

Thus, assuming that $p, L \in \mathbb{C}$ and taking a small circle γ centred at $L=0$ in the complex L-plane we have,

$$
\begin{array}{rlrl}
\frac{\partial w_{m}}{\partial x} & =\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}}\left(L^{m-1} \frac{\partial M}{\partial x}-L^{m-1} \frac{\partial M}{\partial L} \frac{\partial L}{\partial x}\right), & & \\
& =\int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} L^{m-1}\left(M_{x} L_{p}-L_{x} M_{p}\right) & & \text { change of variables } L=L(p) \\
& =\int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} L^{m-1+r} p^{-r} & & \text { and } M_{L} L_{p}=M_{p} \\
& & \text { in virtue of (18). }
\end{array}
$$

For $r \neq 1$ we have
$\frac{\partial w_{m}}{\partial x}=(-m+1-r) \int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} L^{m-1+r-1} L_{p} \frac{p^{1-r}}{1-r} \quad$ integration by parts

$$
=(-m+1-r) \int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{m-1+r-1} \frac{p(L)^{1-r}}{1-r} \quad \text { change of variables } p=p(L)
$$

In the space \mathcal{L} of Laurent series in L we have a resolution of the identity $1_{\mathcal{L}}=\varpi_{\geqslant}+\varpi_{<}$, associated with the splitting in powers of L of greater or equal degree than $1-r$, say $\mathcal{L} \geqslant$, and or less order, $\mathcal{L}_{<}$
$\varpi_{\geqslant}\left(p^{1-r}\right)=L^{1-r}, \quad \varpi_{<} f=\sum_{m<1-r}\left(\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} f(L)\right) L^{m}, \quad \forall f \in \mathcal{L}$
we get

$$
\begin{aligned}
\frac{\partial S(L, x, \boldsymbol{t})}{\partial x} & =\frac{L^{1-r}}{1-r}+\sum_{n=1}^{\infty} \frac{1}{-n+1-r} w_{n, x}(x, \boldsymbol{t}) L^{-n+1-r} \\
& =\frac{L^{1-r}}{1-r}+\sum_{m<1-r}\left(\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} \frac{p(L)^{1-r}}{1-r}\right) L^{m} \\
& =\omega_{\geqslant}\left(\frac{p^{1-r}}{1-r}\right)+\omega_{<}\left(\frac{p^{1-r}}{1-r}\right)=\frac{p^{1-r}}{1-r}
\end{aligned}
$$

For $r=1$ we have

$$
\frac{\partial w_{m}}{\partial x}=\int_{\gamma} \frac{\mathrm{d} \log p}{2 \pi \mathrm{i}} L^{m}
$$

that together with the assumption, suggested by (4),

$$
\log p=\log L-\Lambda, \quad \Lambda=u_{0} L^{-1}+\left(u_{1}+\frac{u_{0}^{2}}{2}\right) L^{-2}+\cdots
$$

allows us to deduce the relations

$$
\frac{\partial w_{m}}{\partial x}=\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{m-1}-\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} \Lambda_{L} L^{m}
$$

Note that the first term in the rhs cancels as $m \geqslant 1$, then an integration by parts of the second term in the rhs leads to

$$
\frac{\partial w_{m}}{\partial x}=m \int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} \Lambda(L) L^{m-1}
$$

Hence, we compute

$$
\begin{aligned}
\frac{\partial S(L, x, \boldsymbol{t})}{\partial x} & =\log L-\sum_{m=1}^{\infty} \frac{1}{m} w_{m, x}(x, \boldsymbol{t}) L^{-m} \\
& =\log L-\sum_{m<0}\left(\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} \Lambda(L)\right) L^{m} \\
& =\log L-\Lambda=\log p
\end{aligned}
$$

Let us prove the relation $\frac{\partial S}{\partial t_{n}}=\omega_{n}$. Observe that, according to (20) we have

$$
\frac{\partial S}{\partial t_{n}}=L^{n+1-r}+\sum_{m=1}^{\infty} \frac{1}{-m+1-r} \frac{\partial w_{m}}{\partial t_{n}} L^{-m+1-r}
$$

now, from (17) we deduce

$$
\begin{equation*}
\frac{\partial M}{\partial t_{n}}=\frac{\partial M}{\partial L} \frac{\partial L}{\partial t_{n}}+(n+1-r) L^{n}+\sum_{m=1}^{\infty} \frac{\partial w_{m}}{\partial t_{n}} L^{-m} \tag{23}
\end{equation*}
$$

Thus

$$
\begin{array}{rlrl}
\frac{\partial w_{m}}{\partial t_{n}}= & \int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}}\left(L^{m-1} \frac{\partial M}{\partial t_{n}}-L^{m-1} \frac{\partial M}{\partial L} \frac{\partial L}{\partial t_{n}}\right), & & \text { from (23) } \\
= & \int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}}\left(L^{m-1}\left\{\Omega_{n}, M\right\}-L^{m-1} \frac{\partial M}{\partial L}\left\{\Omega_{n}, L\right\}\right), & & \text { derived from (6) and (19) } \\
= & \int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}}\left(L^{m-1} p^{r}\left(\Omega_{n, p} M_{x}-\Omega_{n, x} M_{p}\right)\right. & & \\
& \left.-L^{m-1} \frac{\partial M}{\partial L} p^{r}\left(\Omega_{n, p} L_{x}-\Omega_{n, x} L_{p}\right)\right) & & \text { see (1) } \\
=\int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} L^{m-1} p^{r} \Omega_{n, p}\left(M_{x} L_{p}-L_{x} M_{p}\right) & & \text { change of variables } L=L(p) \\
= & \int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} L^{m-1+r} \Omega_{n, p} & & \text { and } M_{L} L_{p}=M_{p} \\
= & (-m+1-r) \int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} L^{m-1+r-1} L_{p} \Omega_{n} & & \text { in virtue of (18) } \\
= & (-m+1-r) \int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{m-1+r-1} \omega_{n} & & \text { change of variablion by parts } p=p(L)
\end{array}
$$

and therefore

$$
\frac{\partial S}{\partial t_{n}}=L^{n+1-r}+\sum_{m<1-r}\left(\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} \omega_{n}\right) L^{m}
$$

Now,
$\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} \omega_{n}=\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1}\left(L^{n+1-r}-P_{<} L^{n+1-r}\right)=-\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} P_{<} L^{n+1-r}$
as $m \neq n+1-r$ for $m<1-r$. So that

$$
\frac{\partial S}{\partial t_{n}}=\omega_{n}+P_{<}\left(L^{n+1-r}\right)-\sum_{m<1-r}\left(\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} P_{<}\left(L^{n+1-r}\right)\right) L^{m}
$$

but

$$
\begin{aligned}
P_{<}\left(L^{n+1-r}\right) & =\sum_{m \in \mathbb{Z}}\left(\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} P_{<}\left(L^{n+1-r}\right)\right) L^{m} \\
& =\sum_{m<1-r}\left(\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}} L^{-m-1} P_{<}\left(L^{n+1-r}\right)\right) L^{m}
\end{aligned}
$$

and the result follows. For $r \neq 1$, let us prove that $\frac{\partial \tilde{S}}{\partial x}=\frac{p^{1-r}}{1-r}$, equations (17) imply

$$
\frac{\partial \tilde{M}}{\partial x}=\frac{\partial \tilde{M}}{\partial \tilde{L}} \frac{\partial \tilde{L}}{\partial x}+\sum_{n=0}^{\infty} \frac{\partial \tilde{w}_{n}}{\partial x} \tilde{L}^{-n}
$$

and hence

$$
\begin{aligned}
\frac{\partial \tilde{w}_{m}}{\partial x} & =\int_{\gamma} \frac{\mathrm{d} L}{2 \pi \mathrm{i}}\left(\tilde{L}^{m-1} \frac{\partial \tilde{M}}{\partial x}-\tilde{L}^{m-1} \frac{\partial \tilde{M}}{\partial \tilde{L}} \frac{\partial \tilde{L}}{\partial x}\right), & & \\
& =\int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} \tilde{L}^{m-1}\left(\tilde{M}_{x} \tilde{L}_{p}-\tilde{L}_{x} \tilde{M}_{p}\right) & & \text { change of variables } \tilde{L}=\tilde{L}(p) \\
& =\int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} \tilde{L}^{m-1+r} p^{-r} & & \text { and } \tilde{M}_{\tilde{L}} \tilde{L}_{p}=\tilde{M}_{p} \\
& =(-m+1-r) \int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} \tilde{L}^{m-1+r-1} \tilde{L}_{p} \frac{p^{1-r}}{1-r} & & \text { in virtue of (18) } \\
& =(-m+1-r) \int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{m-1+r-1} \frac{p^{1-r}}{1-r} & & \text { change of variables } p=p(\tilde{L}) .
\end{aligned}
$$

We now proceed computing

$$
\frac{\partial \tilde{S}(\tilde{L}, x, t)}{\partial x}=\sum_{n=0}^{\infty} \frac{1}{-n+1-r} \tilde{w}_{n, x}(x, t) \tilde{L}^{-n+1-r}=\sum_{m \leqslant 1-r}\left(\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1} \frac{p^{1-r}}{1-r}\right) \tilde{L}^{m},
$$

noting that $\frac{p^{1-r}}{1-r} \in \mathfrak{g}_{\leqslant}$we get the desired result. For $r=1$ we have

$$
\frac{\partial \tilde{w}_{m}}{\partial x}=\int_{\gamma} \frac{\mathrm{d} \log p}{2 \pi \mathrm{i}} \tilde{L}^{m}
$$

assuming, as suggested by (10), that

$$
\log p=\log \tilde{L}-\tilde{\Lambda}, \quad \tilde{\Lambda}:=\log v+\frac{v_{0}}{v} \tilde{L}^{-1}+\left(v_{1}+\frac{v_{0}^{2}}{2 v^{2}}\right) \tilde{L}^{-2}+\cdots
$$

we have

$$
\begin{aligned}
\frac{\partial \tilde{w}_{m}}{\partial x} & =\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{m-1}-\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{\Lambda}_{\tilde{L}} \tilde{L}^{m} \\
& =m \int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{\Lambda} L^{m-1}, \quad m \geqslant 1 .
\end{aligned}
$$

Thus, we calculate

$$
\begin{aligned}
\frac{\partial \tilde{S}(\tilde{L}, x, \boldsymbol{t})}{\partial x} & =\log \tilde{L}-\sum_{m=1}^{\infty} \frac{1}{m} \tilde{w}_{m, x}(x, \boldsymbol{t}) \tilde{L}^{-m}=\log \tilde{L}-\sum_{m<0}\left(\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1} \tilde{\Lambda}(\tilde{L})\right) \tilde{L}^{m} \\
& =\log \tilde{L}-\tilde{\Lambda}=\log p
\end{aligned}
$$

To check the formula $\frac{\partial \tilde{S}}{\partial t_{n}}=\tilde{\omega}_{n}$, we proceed in a similar way. Equation (21) implies that

$$
\frac{\partial \tilde{S}}{\partial t_{n}}=\tilde{L}^{n+1-r}+\sum_{m=0}^{\infty} \frac{1}{-m+1-r} \frac{\partial \tilde{w}_{m}}{\partial t_{n}} \tilde{L}^{-m+1-r}
$$

now, from (17) we deduce

$$
\begin{equation*}
\frac{\partial \tilde{M}}{\partial t_{n}}=\frac{\partial \tilde{M}}{\partial \tilde{L}} \frac{\partial \tilde{L}}{\partial t_{n}}+(n+1-r) \tilde{L}^{n}+\sum_{m=0}^{\infty} \frac{\partial \tilde{w}_{m}}{\partial t_{n}} \tilde{L}^{-m} \tag{24}
\end{equation*}
$$

As for the r-dmKP case we have the following chain of observations:

$$
\begin{aligned}
\frac{\partial \tilde{w}_{m}}{\partial t_{n}} & =\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}}\left(\tilde{L}^{m-1} \frac{\partial \tilde{M}}{\partial t_{n}}-\tilde{L}^{m-1} \frac{\partial \tilde{M}}{\partial \tilde{L}} \frac{\partial \tilde{L}}{\partial t_{n}}\right), & & \text { from (24) } \\
& =\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}}\left(\tilde{L}^{m-1}\left\{\tilde{\Omega}_{n}, \tilde{M}\right\}-\tilde{L}^{m-1} \frac{\partial \tilde{M}}{\partial \tilde{L}}\left\{\tilde{\Omega}_{n}, \tilde{L}\right\}\right), & & \text { derived from (6) and (19) } \\
& =\int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} \tilde{L}^{m-1} p^{r} \tilde{\Omega}_{n, p}\left(\tilde{M}_{x} \tilde{L}_{p}-\tilde{L}_{x} \tilde{M}_{p}\right) & & \text { change of variables } \tilde{L}=\tilde{L}(p) \\
& =(-m+1-r) \int_{\gamma} \frac{\mathrm{d} p}{2 \pi \mathrm{i}} \tilde{L}^{m-1+r-1} \tilde{L}_{p} \tilde{\Omega}_{n} & & \text { integration by parts } \\
& =(-m+1-r) \int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{m-1+r-1} \tilde{\Omega}_{n} & & \text { change of variables } p=p(\tilde{L})
\end{aligned}
$$

that lead to

$$
\frac{\partial \tilde{S}}{\partial t_{n}}=\tilde{L}^{n+1-r}+\sum_{m \leqslant 1-r}\left(\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1} \tilde{\Omega}_{n}\right) \tilde{L}^{m}
$$

Also we have
$\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1} \tilde{\Omega}_{n}=\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1}\left(\tilde{L}^{n+1-r}-P_{\leqslant} \tilde{L}^{n+1-r}\right)=-\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} L^{-m-1} P_{\leqslant} \tilde{L}^{n+1-r}$ as $m \neq n+1-r$ for $m \leqslant 1-r$. Therefore,

$$
\frac{\partial \tilde{S}}{\partial t_{n}}=\tilde{\Omega}_{n}+P_{\leqslant}\left(\tilde{L}^{n+1-r}\right)-\sum_{m \leqslant 1-r}\left(\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1} P_{\leqslant}\left(\tilde{L}^{n+1-r}\right)\right) \tilde{L}^{m}
$$

and from

$$
\begin{aligned}
P_{\leqslant}\left(\tilde{L}^{n+1-r}\right) & =\sum_{m \in \mathbb{Z}}\left(\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1} P_{\leqslant}\left(\tilde{L}^{n+1-r}\right)\right) \tilde{L}^{m} \\
& =\sum_{m \leqslant 1-r}\left(\int_{\gamma} \frac{\mathrm{d} \tilde{L}}{2 \pi \mathrm{i}} \tilde{L}^{-m-1} P_{\leqslant}\left(\tilde{L}^{n+1-r}\right)\right) \tilde{L}^{m}
\end{aligned}
$$

we arrive at the claimed result.

3.3. The S-function formulation of the integrable hierarchies

Here we show that the integrable hierarchies can be formulated in terms of S-functions. This is a key observation for the reduction procedure that we shall present in the following section.

Proposition 3. Let L and \tilde{L} be functions with expansions as given in (4) and (10), respectively, and Π_{r} as defined in (16). Let $S(L, x, t)$ and $\tilde{S}(\tilde{L}, x, t)$ be S-functions, i.e.

$$
\begin{array}{ll}
\frac{\partial S}{\partial x}=\Pi_{r}, & \frac{\partial \tilde{S}}{\partial x}=\Pi_{r}, \\
\frac{\partial S}{\partial t_{n}}=P_{\geqslant}\left(L^{n+1-r}\right), & \frac{\partial \tilde{S}}{\partial t_{n}}=P_{>}\left(\tilde{L}^{n+1-r}\right),
\end{array}
$$

Then, L and \tilde{L} satisfy the r-dmKP and r-dDym hierarchies (6) and (12), respectively, i.e.,

$$
\frac{\partial L}{\partial t_{n}}=\left\{P_{\geqslant}\left(L^{n+1-r}\right), L\right\}, \quad \frac{\partial \tilde{L}}{\partial t_{n}}=\left\{P_{>}\left(\tilde{L}^{n+1-r}\right), \tilde{L}\right\} .
$$

Proof. From $S_{x}=\Pi_{r}$ we deduce

$$
\frac{\partial p}{\partial t_{n}}=p^{r} \frac{\partial^{2} S}{\partial t_{n} \partial x}=p^{r}\left(\Omega_{n}(p(L, x, \boldsymbol{t}), x, \boldsymbol{t})\right)_{x}=p^{r}\left(\Omega_{n, p} p_{x}+\Omega_{x}\right) .
$$

Thus,
$\frac{\partial L}{\partial t_{n}}=-\frac{\partial L}{\partial p} \frac{\partial p}{\partial t_{n}}=-L_{p} p^{r}\left(\Omega_{n, p} p_{x}+\Omega_{x}\right)=p^{r}\left(-\Omega_{n, p} L_{x}+\Omega_{x} L_{p}\right)=\left\{\Omega_{n}, L\right\}$,
as claimed. The statement for the r-dDym hierarchy follows analogously.

4. Reductions

The reductions we consider here are motivated by the reductions we studied in [18] of the dispersionless KP hierarchy. We assume that the t-dependence appears always in terms of $\boldsymbol{U}=\left(U_{1}, \ldots, U_{N}\right)$, a set of N functions of t and x. This dependence is defined through the following equations for the function $p=p(L, \boldsymbol{U})$ or $p=p(\tilde{L}, \boldsymbol{U})$:

$$
\begin{equation*}
\frac{\partial p}{\partial U_{i}}=R_{i}(p, \boldsymbol{U}), \quad i=1, \ldots, N \tag{25}
\end{equation*}
$$

which in terms of the Lax functions are

$$
\begin{array}{ll}
\frac{\partial L}{\partial U_{i}}+R_{i}(p, \boldsymbol{U}) \frac{\partial L}{\partial p}=0, & i=1, \ldots, N \\
\frac{\partial \tilde{L}}{\partial U_{i}}+\tilde{R}_{i}(p, \boldsymbol{U}) \frac{\partial \tilde{L}}{\partial p}=0, & i=1, \ldots, N . \tag{27}
\end{array}
$$

We shall assume that the compatibility conditions for (25) are fulfilled, i.e. both sets of functions $\left\{R_{i}\right\}_{i=1}^{N}$ and $\left\{\tilde{R}_{i}\right\}_{i=1}^{N}$ fulfil

$$
\begin{equation*}
\frac{\partial R_{i}}{\partial U_{j}}-\frac{\partial R_{j}}{\partial U_{i}}+R_{j} \frac{\partial R_{i}}{\partial p}-R_{i} \frac{\partial R_{j}}{\partial p}=0 . \tag{28}
\end{equation*}
$$

We shall also suppose that R_{i} and $\tilde{R}_{i}, i=1, \ldots, N$, are rational functions with N simple poles, $\pi_{i}=\pi_{i}(\boldsymbol{U})$ and $\tilde{\pi}_{i}=\tilde{\pi}_{i}(\boldsymbol{U}) i=1, \ldots, N$, respectively. Recalling expansions (4) and (10) and taking into account formulae (26) and (27), we request R_{i} to be of order O (1)
when $p \rightarrow \infty$ and \tilde{R}_{i} of order $O(p)$ when $p \rightarrow \infty$. Hence, our functions R shall be of the form

$$
\begin{align*}
& R_{i}(\boldsymbol{U})=p \sum_{j=1}^{N} \frac{\rho_{i j}(\boldsymbol{U})}{p-\pi_{j}(\boldsymbol{U})} \tag{29}\\
& \tilde{R}_{i}(\boldsymbol{U})=p^{2} \sum_{j=1}^{N} \frac{\tilde{\rho}_{i j}(\boldsymbol{U})}{p-\tilde{\pi}_{j}(\boldsymbol{U})} \tag{30}
\end{align*}
$$

The asymptotic behaviour for $p \rightarrow \infty$ is

$$
\begin{aligned}
& R_{i}=R_{i, 0}+R_{i, 1} p^{-1}+R_{i, 2} p^{-2}+\cdots \\
& \tilde{R}_{i}=\tilde{R}_{i, 0} p+\tilde{R}_{i, 1}+\tilde{R}_{i, 2} p^{-1}+\cdots
\end{aligned}
$$

where we have used the following notation:

$$
R_{i, n}:=\sum_{j=1}^{N} \rho_{i j} \pi_{j}^{n}, \quad \tilde{R}_{i, n}:=\sum_{j=1}^{N} \tilde{\rho}_{i j} \tilde{\pi}_{j}^{n}
$$

Equation (26) together with (29), in the r-dmKP hierarchy case, imply

$$
\begin{align*}
& \frac{\partial u_{0}}{\partial U_{i}}=-R_{i, 0} \\
& \frac{\partial u_{1}}{\partial U_{i}}=-R_{i, 1} \tag{31}\\
& \frac{\partial u_{2}}{\partial U_{i}}=-R_{i, 2}+R_{i, 0} u_{1}
\end{align*}
$$

Observe that all the coefficients u_{n} are expressed recursively in terms of the functions $\left\{\pi_{k}, \rho_{i k}\right\}$ defining R_{i}. Equation (27) together with (30), in the r-dDym hierarchy case, leads to

$$
\begin{align*}
& \frac{\partial v}{\partial U_{i}}=-\tilde{R}_{i, 0} v \\
& \frac{\partial v_{0}}{\partial U_{i}}=-\tilde{R}_{i, 1} v \\
& \frac{\partial v_{1}}{\partial U_{i}}=-\tilde{R}_{i, 2} v+\tilde{R}_{i, 0} v_{1} \tag{32}
\end{align*}
$$

Observe that all the coefficients v and v_{n} are expressed recursively in terms of the functions $\left\{\tilde{\pi}_{k}, \tilde{\rho}_{i k}\right\}$ defining R_{i}.

4.1. On the compatibility conditions

We now discuss the compatibility conditions for (28).
r-dDym. The compatibility equations for (28) with the choice (30) are

$$
\begin{align*}
& \tilde{\rho}_{i l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{j}}-\tilde{\rho}_{j l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{i}}=\sum_{k \neq l} \frac{\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}}{\tilde{\pi}_{k}-\tilde{\pi}_{l}} \tilde{\pi}_{l}^{2} \tag{33a}\\
& \frac{\partial \tilde{\rho}_{i l}}{\partial U_{j}}-\frac{\partial \tilde{\rho}_{j l}}{\partial U_{i}}=2 \sum_{k \neq l} \frac{\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}}{\left(\tilde{\pi}_{l}-\tilde{\pi}_{k}\right)^{2}} \tilde{\pi}_{k} \tilde{\pi}_{l} \tag{33b}
\end{align*}
$$

From equations (33a) and (33b) we deduce.

Proposition 4. There exist a pair of potentials $\tilde{\sigma}$ and $\tilde{\rho}$ such that

$$
\begin{align*}
& \tilde{R}_{i, 0}=-\frac{\partial \tilde{\sigma}}{\partial U_{i}} \tag{34}\\
& \tilde{R}_{i, 1}=-\frac{\partial \tilde{\rho}}{\partial U_{i}}-\tilde{\rho} \frac{\partial \tilde{\sigma}}{\partial U_{i}} . \tag{35}
\end{align*}
$$

Proof. Firstly, we observe that

$$
\frac{\partial R_{i, 0}}{\partial U_{j}}-\frac{\partial R_{j, 0}}{\partial U_{i}}=\sum_{l=1}^{N}\left(\frac{\partial \tilde{\rho}_{i l}}{\partial U_{j}}-\frac{\partial \tilde{\rho}_{j l}}{\partial U_{i}}\right)=2 \sum_{\substack{l=1, \ldots, N \\ k \neq l}} \frac{\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}}{\left(\tilde{\pi}_{l}-\tilde{\pi}_{k}\right)^{2}} \tilde{\pi}_{k} \tilde{\pi}_{l}=0 .
$$

Secondly, we evaluate

$$
\begin{aligned}
& \frac{\partial R_{i, 1}}{\partial U_{j}}-R_{j, 0} R_{i, 1}-\left(\frac{\partial R_{j, 1}}{\partial U_{i}}-R_{i, 0} R_{j, 1}\right) \\
& \quad=\sum_{\substack{l=1, \ldots, N \\
k \neq l}}\left[\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right)\left(\frac{2 \tilde{\pi}_{l}^{2} \tilde{\pi}_{k}}{\left(\tilde{\pi}_{l}-\tilde{\pi}_{k}\right)^{2}}-\frac{\tilde{\pi}_{l}^{2}}{\tilde{\pi}_{l}-\tilde{\pi}_{k}}+\tilde{\pi}_{l}\right)\right] \\
& =\sum_{\substack{l=1, \ldots, N \\
k \neq l}}\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right) \tilde{\pi}_{k} \tilde{\pi}_{l}\left(\tilde{\pi}_{k}+\tilde{\pi}_{l}\right)=0 .
\end{aligned}
$$

The stated result is a direct consequence of these two equations.
r-dmKP. The compatibility equations (28) for (29) are

$$
\begin{align*}
& \rho_{i l} \frac{\partial \pi_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial \pi_{l}}{\partial U_{i}}=\sum_{k \neq l} \frac{\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}}{\pi_{k}-\pi_{l}} \pi_{l}, \tag{36a}\\
& \frac{\partial \rho_{i l}}{\partial U_{j}}-\frac{\partial \rho_{j l}}{\partial U_{i}}=\sum_{k \neq l} \frac{\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}}{\left(\pi_{l}-\pi_{k}\right)^{2}}\left(\pi_{k}+\pi_{l}\right) . \tag{36b}
\end{align*}
$$

As in proposition 4 we can show that
Proposition 5. There exists a potential ρ such that

$$
\begin{equation*}
R_{i, 0}=-\frac{\partial \rho}{\partial U_{i}} \tag{37}
\end{equation*}
$$

The following proposition shows a connection between the compatibility conditions for the r-dDym and r-dmKP equations. Further, it also shows a connection between these and the compatibility conditions

$$
\begin{align*}
& r_{i l} \frac{\partial p_{l}}{\partial U_{j}}-r_{j l} \frac{\partial p_{l}}{\partial U_{i}}=\sum_{k \neq l} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{p_{k}-p_{l}} \tag{38a}\\
& \frac{\partial r_{i l}}{\partial U_{j}}-\frac{\partial r_{j l}}{\partial U_{i}}=2 \sum_{k \neq l} \frac{r_{j l} r_{i k}-r_{i l} r_{j k}}{\left(p_{l}-p_{k}\right)^{2}} \tag{38b}
\end{align*}
$$

for similar reductions of the dispersionless KP hierarchy, that we discussed in some length in [18].

Proposition 6.

(1) If $\tilde{\pi}_{i}$ and $\tilde{\rho}_{i j}$ solve the compatibility conditions (33a) and (33b) then

$$
\begin{equation*}
\pi_{i}=\mathrm{e}^{\tilde{\sigma}} \tilde{\pi}_{i}, \quad \rho_{i j}=\mathrm{e}^{\tilde{\sigma}} \tilde{\rho}_{i j} \tilde{\pi}_{j} \tag{39}
\end{equation*}
$$

solve the compatibility conditions (36a) and (36b). Moreover, we may take as the potential ρ the following function:

$$
\rho=\mathrm{e}^{\tilde{\sigma}} \tilde{\rho}
$$

(2) If π_{i} and $\rho_{i j}$ solve the compatibility conditions (36a) and (36b) then

$$
\begin{equation*}
p_{i}=\pi_{i}+\rho, \quad r_{i j}=\rho_{i j} \pi_{j} \tag{40}
\end{equation*}
$$

solve the compatibility conditions (38a) and (38b).

Proof.

(1) With expressions (39) and formulae (33a) and (33b) we evaluate

$$
\begin{aligned}
&\left.\begin{array}{rl}
\rho_{i l} \frac{\partial \pi_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial \pi_{l}}{\partial U_{i}} & =\mathrm{e}^{2 \tilde{\sigma}}\left(\left(\tilde{\rho}_{i l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{j}}-\tilde{\rho}_{j l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{i}}\right) \tilde{\pi}_{l}-\left(\tilde{\rho}_{i l} \tilde{R}_{j, 0}-\tilde{\rho}_{j l} \tilde{R}_{i, 0}\right) \tilde{\pi}_{l}^{2}\right) \\
& =\mathrm{e}^{2 \tilde{\sigma}} \sum_{k \neq l}\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right) \tilde{\pi}_{l}^{2}\left(\frac{\tilde{\pi}_{l}}{\tilde{\pi}_{k}-\tilde{\pi}_{l}}+1\right) \\
& =\mathrm{e}^{2 \tilde{\sigma}} \sum_{k \neq l}\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right) \tilde{\pi}_{k} \tilde{\pi}_{l} \frac{\tilde{\pi}_{l}}{\tilde{\pi}_{k}-\tilde{\pi}_{l}} \\
& =\sum_{k \neq l} \frac{\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}}{\pi_{k}-\pi_{l}} \pi_{l} \\
\frac{\partial \rho_{i l}}{\partial U_{j}}-\frac{\partial \rho_{j l}}{\partial U_{i}}= & \mathrm{e}^{\tilde{\sigma}}\left(\frac{\partial \tilde{\rho}_{i l}}{\partial U_{j}}-\frac{\partial \tilde{\rho}_{j l}}{\partial U_{i}}-\left(\tilde{\rho}_{i l} \tilde{R}_{j, 0}-\tilde{\rho}_{j l} \tilde{R}_{i, 0}\right) \tilde{\pi}_{l}+\tilde{\rho}_{i l} l\right. \\
\partial \tilde{\pi}_{l} \\
= & \mathrm{e}^{\tilde{\sigma}} \sum_{k \neq l}\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{j l} \tilde{\rho}_{j k}\right)\left(\frac{\partial \tilde{\pi}_{l}}{\partial U_{i}}\right) \\
= & \mathrm{e}^{\tilde{\sigma}} \sum_{k \neq l}\left(\tilde{\pi}_{i k}^{2} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right) \tilde{\pi}_{k} \tilde{\pi}_{l} l \\
\left(\tilde{\pi}_{k}+\frac{\tilde{\pi}_{k} \tilde{\pi}_{l}}{\left(\tilde{\pi}_{k}-\tilde{\pi}_{l}\right)^{2}}\right. \\
\tilde{\pi}_{k}-\tilde{\pi}_{l}
\end{array}\right) \\
&= \sum_{k \neq l} \frac{\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}}{\left(\pi_{l}-\pi_{k}\right)^{2}}\left(\pi_{k}+\pi_{l l}\right)
\end{aligned}
$$

and as claimed we got (36a) and (36b).
From (39) we get

$$
R_{i, 0}=\mathrm{e}^{\tilde{\sigma}} \tilde{R}_{i, 1},
$$

i.e.,

$$
\frac{\partial \rho}{\partial U_{i}}=\mathrm{e}^{\tilde{\sigma}}\left(\frac{\partial \rho}{\partial U_{i}}+\tilde{\rho} \frac{\partial \tilde{\sigma}}{\partial U_{i}}\right)=\frac{\partial\left(\mathrm{e}^{\tilde{\sigma}} \tilde{\rho}\right)}{\partial U_{i}} .
$$

(2) We now use (40) together with (36a) and (36b) to get

$$
\begin{aligned}
r_{i l} \frac{\partial p_{l}}{\partial U_{j}}-r_{j l} \frac{\partial p_{l}}{\partial U_{i}} & =\left(\rho_{i l} \frac{\partial \pi_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial \pi_{l}}{\partial U_{i}}\right) \pi_{l}-\rho_{i l} R_{j, 0}+\rho_{j l} R_{i, 0} \\
& =\sum_{k \neq l}\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right) \pi_{l}\left(\frac{\pi_{l}}{\pi_{k}-\pi_{l}}+1\right) \\
& =\sum_{k \neq l}\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right) \pi_{k} \pi_{l} \frac{1}{\pi_{k}-\pi_{l}} \\
& =\sum_{k \neq l} \frac{r_{i k} r_{j l}-r_{i l} r_{j k}}{p_{k}-p_{l}} \\
\frac{\partial r_{i l}}{\partial U_{j}}-\frac{\partial r_{j l}}{\partial U_{i}}= & \left(\frac{\partial \rho_{i l}}{\partial U_{j}}-\frac{\partial \rho_{j l}}{\partial U_{i}}\right) \pi_{l}+\rho_{i l} \frac{\partial \pi_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial \pi_{l}}{\partial U_{i}} \\
= & \sum_{k \neq l}\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right)\left(\frac{\left(\pi_{k}+\pi_{l}\right) \pi_{l}}{\left(\pi_{k}-\pi_{l}\right)^{2}}+\frac{\pi_{l}}{\pi_{k}-\pi_{l}}\right) \\
= & 2 \sum_{k \neq l}\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right) \pi_{k} \pi_{l} \frac{1}{\left(\pi_{k}-\pi_{l}\right)^{2}} \\
= & 2 \sum_{k \neq l} \frac{r_{i k} r_{j l}-r_{i l} r_{j k}}{\left(p_{l}-p_{k}\right)^{2}} .
\end{aligned}
$$

In the following proposition we show that the inverse statement also holds.

Proposition 7.

(1) Let $\pi_{i}, \rho_{i j}$ be solutions of (36a) and (36b), then there exists a potential function $\tilde{\sigma}$ such that

$$
\frac{\partial \tilde{\sigma}}{\partial U_{i}}=-\sum_{l=1}^{N} \frac{\rho_{i l}}{\pi_{l}}
$$

Moreover,

$$
\tilde{\pi}_{i}=\mathrm{e}^{-\tilde{\sigma}} \pi_{i}, \quad \tilde{\rho}_{i j}=\frac{\rho_{i j}}{\pi_{j}}
$$

provide us with solutions to (33a) and (33b).
(2) Let $p_{i}, r_{i j}$ be solutions of (38a) and (38b), then there exists a potential function ρ such that

$$
\frac{\partial \rho}{\partial U_{i}}=\sum_{l=1}^{N} \frac{r_{i l}}{\rho-p_{l}}
$$

Moreover,

$$
\pi_{i}:=p_{j}-\rho, \quad \rho_{i j}:=\frac{r_{i j}}{p_{j}-\rho}
$$

solve equations (36a) and (36b).

Proof.

(1) Let us evaluate

$$
\begin{aligned}
\frac{\partial}{\partial U_{j}}\left(\sum_{l=1}^{N} \frac{\rho_{i l}}{\pi_{l}}\right) & -\frac{\partial}{\partial U_{i}}\left(\sum_{l=1}^{N} \frac{\rho_{j l}}{\pi_{l}}\right)=\sum_{l=1}^{N}\left(\frac{\rho_{i l, j}-\rho_{j l, i}}{\pi_{l}}-\frac{\rho_{i l} \pi_{l, j}-\rho_{j l} \pi_{l, i}}{\pi_{l}^{2}}\right) \\
& =\sum_{\substack{l=1, \ldots, N \\
k \neq l}}\left(\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right)\left(\frac{\pi_{k}+\pi_{l}}{\pi_{l}\left(\pi_{l}-\pi_{k}\right)^{2}}-\frac{\pi_{k}-\pi_{l}}{\pi_{l}\left(\pi_{l}-\pi_{k}\right)^{2}}\right)\right) \\
& =2 \sum_{\substack{l=1, \ldots, N \\
k \neq l}} \frac{\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}}{\left(\pi_{l}-\pi_{k}\right)^{2}}=0 .
\end{aligned}
$$

So that, locally, the existence of the mentioned potential holds, and relation (39) allows us to identify it with $\tilde{\sigma}$. Moreover, the identities
$\rho_{i l} \frac{\partial \pi_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial \pi_{l}}{\partial U_{i}}=\mathrm{e}^{2 \tilde{\sigma}}\left(\left(\tilde{\rho}_{i l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{j}}-\tilde{\rho}_{j l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{i}}\right) \tilde{\pi}_{l}-\left(\tilde{\rho}_{i l} \tilde{R}_{j, 0}-\tilde{\rho}_{j l} \tilde{R}_{i, 0}\right) \tilde{\pi}_{l}^{2}\right)$
$\sum_{k \neq l} \frac{\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}}{\pi_{k}-\pi_{l}} \pi_{l}=\mathrm{e}^{2 \tilde{\sigma}} \sum_{k \neq l}\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right) \tilde{\pi}_{k} \tilde{\pi}_{l} \frac{\tilde{\pi}_{l}}{\tilde{\pi}_{k}-\tilde{\pi}_{l}}$
$\frac{\partial \rho_{i l}}{\partial U_{j}}-\frac{\partial \rho_{j l}}{\partial U_{i}}=\mathrm{e}^{\tilde{\sigma}}\left(\frac{\partial \tilde{\rho}_{i l}}{\partial U_{j}}-\frac{\partial \tilde{\rho}_{j l}}{\partial U_{i}}-\left(\tilde{\rho}_{i l} \tilde{R}_{j, 0}-\tilde{\rho}_{j l} \tilde{R}_{i, 0}\right) \tilde{\pi}_{l}+\tilde{\rho}_{i l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{j}}-\tilde{\rho}_{j l} \frac{\partial \tilde{\pi}_{l}}{\partial U_{i}}\right)$
$\sum_{k \neq l} \frac{\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}}{\left(\pi_{l}-\pi_{k}\right)^{2}}\left(\pi_{k}+\pi_{l}\right)=\mathrm{e}^{\tilde{\sigma}} \sum_{k \neq l}\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right) \tilde{\pi}_{k} \tilde{\pi}_{l} \frac{\tilde{\pi}_{k}+\tilde{\pi}_{l}}{\left(\tilde{\pi}_{k}-\tilde{\pi}_{l}\right)^{2}}$,
imply our statements.
(2) The compatibility conditions for

$$
\frac{\partial \rho}{\partial U_{i}}=\sum_{l=1}^{N} \frac{r_{i l}}{\rho-p_{l}}
$$

are precisely equations (38a) and (38b), see [18].
Now, the remaining results follow from the equations:

$$
\begin{aligned}
& r_{i l} \frac{\partial p_{l}}{\partial U_{j}}-r_{j l} \frac{\partial p_{l}}{\partial U_{i}}=\left(\rho_{i l} \frac{\partial \pi_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial \pi_{l}}{\partial U_{i}}\right) \pi_{l}-\rho_{i l} R_{j, 0}+\rho_{j l} R_{i, 0} \\
& \sum_{k \neq l} \frac{r_{i k} r_{j l}-r_{i l} r_{j k}}{p_{k}-p_{l}}=\sum_{k \neq l}\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right) \pi_{l}\left(\frac{\pi_{l}}{\pi_{k}-\pi_{l}}+1\right) \\
& \frac{\partial r_{i l}}{\partial U_{j}}-\frac{\partial r_{j l}}{\partial U_{i}}=\left(\frac{\partial \rho_{i l}}{\partial U_{j}}-\frac{\partial \rho_{j l}}{\partial U_{i}}\right) \pi_{l}+\rho_{i l} \frac{\partial \pi_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial \pi_{l}}{\partial U_{i}} \\
& 2 \sum_{k \neq l} \frac{r_{i k} r_{j l}-r_{i l} r_{j k}}{\left(p_{l}-p_{k}\right)^{2}}=\sum_{k \neq l}\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right)\left(\frac{\left(\pi_{k}+\pi_{l}\right) \pi_{l}}{\left(\pi_{k}-\pi_{l}\right)^{2}}+\frac{\pi_{l}}{\pi_{k}-\pi_{l}}\right) .
\end{aligned}
$$

Relations (31), (32), (34) and (35) allow us to take

$$
u_{0}=\rho
$$

and

$$
v=\exp (\tilde{\sigma}), \quad v_{0}=\tilde{\rho} \exp (\tilde{\sigma})
$$

Diagonal reductions appear when $\rho_{i j}=\rho_{i} \delta_{i j}$ and $\tilde{\rho}_{i j}=\tilde{\rho}_{i} \delta_{i j}$ then

$$
R_{i}=\frac{p \rho_{i}}{p-\pi_{i}}, \quad \tilde{R}_{i}=\frac{p^{2} \tilde{\rho}_{i}}{p-\tilde{\pi}_{i}},
$$

and (36a) and (36b) become

$$
\begin{align*}
& \frac{\partial \pi_{i}}{\partial U_{j}}=\frac{\rho_{j}}{\pi_{i}-\pi_{j}} \pi_{i} \tag{41a}\\
& \frac{\partial \rho_{i}}{\partial U_{j}}=-\frac{\rho_{i} \rho_{j}}{\left(\pi_{i}-\pi_{j}\right)^{2}}\left(\pi_{j}+\pi_{i}\right) \tag{41b}
\end{align*}
$$

while (33a) and (33b) read

$$
\begin{align*}
& \frac{\partial \tilde{\pi}_{i}}{\partial U_{j}}-\frac{\tilde{\rho}_{j}}{\tilde{\pi}_{i}-\tilde{\pi}_{j}} \tilde{\pi}_{i}^{2}, \tag{42a}\\
& \frac{\partial \tilde{\rho}_{i}}{\partial U_{j}}=-2 \frac{\tilde{\rho}_{i} \tilde{\rho}_{j}}{\left(\tilde{\pi}_{i}-\tilde{\pi}_{j}\right)^{2}} \tilde{\pi}_{j} \tilde{\pi}_{i} . \tag{42b}
\end{align*}
$$

4.2. Reductions for the r-dmKP hierarchy

Here we shall consider the reduction (26) for R_{i} as in (29). We also consider functions $s_{<} \in \mathfrak{g}_{<}$ satisfying

$$
\begin{equation*}
\frac{\partial s_{<}}{\partial p} R_{i}+\frac{\partial s_{<}}{\partial U_{i}}=p^{1-r} \sum_{j=1}^{N} \frac{\rho_{i j} f_{j}}{p-p_{j}} \tag{43}
\end{equation*}
$$

where we suppose that the compatibility conditions for (43)

$$
\rho_{i l} \frac{\partial f_{l}}{\partial U_{j}}-\rho_{j l} \frac{\partial f_{l}}{\partial U_{i}}=-\sum_{k \neq l}\left(\rho_{i k} \rho_{j l}-\rho_{i l} \rho_{j k}\right)\left(r+\frac{\pi_{k}}{\pi_{l}-\pi_{k}}\right) \frac{f_{l}-f_{k}}{\pi_{l}-\pi_{k}}
$$

hold. If we deal with a diagonal reduction of the type $\rho_{i j}=\rho_{i} \delta_{i j}$ the above compatibility conditions become

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial U_{j}}=\frac{\rho_{j}}{\pi_{i}-\pi_{j}}\left(r+\frac{\pi_{j}}{\pi_{i}-\pi_{j}}\right)\left(f_{i}-f_{j}\right) \tag{44}
\end{equation*}
$$

Then, we have
Proposition 8. Let $s_{<}(p, \boldsymbol{U}) \in \mathfrak{g}_{<}$be a function satisfying (43) and define

$$
\begin{aligned}
& s \geqslant(p, \boldsymbol{U}, \boldsymbol{t}):=\sum_{n=1}^{\infty} t_{n} \Omega_{n}(p, \boldsymbol{U}) \in \mathfrak{g}_{\geqslant}, \\
& s(p, \boldsymbol{U}, x, \boldsymbol{t}):=s \geqslant(p, \boldsymbol{U}, \boldsymbol{t})+\Pi_{r}(p) x+s_{<}(p, \boldsymbol{U}) .
\end{aligned}
$$

Suppose that $\boldsymbol{U}=\boldsymbol{U}(x, \boldsymbol{t})$ is determined by the following hodograph system:
$\sum_{n=1}^{\infty} t_{n} \frac{\partial \Omega_{n}}{\partial p}\left(\pi_{i}(\boldsymbol{U}), \boldsymbol{U}\right)+x \pi_{i}(\boldsymbol{U})^{-r}+\pi_{i}(\boldsymbol{U})^{-r} f_{i}(\boldsymbol{U})=0, \quad i=1, \ldots, N$.
Then,

$$
S(L, x, \boldsymbol{t}):=s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})
$$

is an S-function.

Proof. As we have

$$
\begin{aligned}
\frac{\partial S}{\partial t_{n}} & =\omega_{n}(L, \boldsymbol{U})+\left.\sum_{i=1}^{N} \frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}\right|_{\boldsymbol{U}=\boldsymbol{U}(t)} \frac{\partial U_{i}}{\partial t_{n}} \\
\frac{\partial S}{\partial x} & =\Pi_{r}+\left.\sum_{i=1}^{N} \frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}\right|_{\boldsymbol{U}=\boldsymbol{U}(t)} \frac{\partial U_{i}}{\partial x}
\end{aligned}
$$

the stated result follows from the identity:

$$
\left.\frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}\right|_{\boldsymbol{U}=\boldsymbol{U}(t)}=0
$$

that we shall show to hold. For this aim we first observe that

$$
\begin{equation*}
\frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=\frac{\partial s}{\partial p} R_{i}+\frac{\partial s}{\partial U_{i}} . \tag{46}
\end{equation*}
$$

Then, multiplying (43) by $\prod_{l=1}^{N}\left(p-p_{l}\right)$, recalling that $s_{<}$is regular at $p=\pi_{i}$, and taking the limit $p \rightarrow \pi_{i}$ we get

$$
\left.\frac{\partial s_{<}}{\partial p}\right|_{p=\pi_{i}}=\pi_{i}^{-r} f_{i}
$$

which together with (45) implies

$$
\begin{equation*}
\left.\frac{\partial s}{\partial p}\right|_{p=\pi_{i}}=0 \tag{47}
\end{equation*}
$$

Now, observing

$$
\frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=\sum_{n=1}^{\infty} t_{n} \frac{\partial \omega_{n}(L, \boldsymbol{U})}{\partial U_{i}}+x p^{-r} R_{i}+\frac{\partial s_{<}}{\partial U_{i}}
$$

and recalling
$\omega_{n}(L, \boldsymbol{U}):=\Omega_{n}(p(L, \boldsymbol{U}), \boldsymbol{U})=L^{n+1-r}-P_{<}\left(L^{n+1-r}\right) \quad \Rightarrow \quad \frac{\partial \omega_{n}(L, \boldsymbol{U})}{\partial U_{i}} \in \mathfrak{g}_{<}$,
$R_{i}=O(1), \quad p \rightarrow \infty \quad \Rightarrow \quad p^{-r} R_{i} \in \mathfrak{g}_{<}$,
we conclude

$$
\frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, \boldsymbol{t})}{\partial U_{i}} \in \mathfrak{g}_{<}
$$

that, when applied to equation (46), gives

$$
\begin{equation*}
\frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=P_{<}\left(\frac{\partial s}{\partial p} R_{i}\right)+\frac{\partial s_{<}}{\partial U_{i}} . \tag{48}
\end{equation*}
$$

Let us introduce a function $E=E(p, \boldsymbol{U}) \in \mathfrak{g} \geqslant$ such that

$$
\begin{equation*}
\frac{\partial E}{\partial p}\left(\pi_{i}, \boldsymbol{U}\right)=\pi_{i}^{-r} f_{i}(\boldsymbol{U}) \tag{49}
\end{equation*}
$$

for example, we may take

$$
\frac{\partial E}{\partial p}=p^{-r} \sum_{i=1}^{N} f_{i} \prod_{j \neq i} \frac{p-\pi_{j}}{\pi_{i}-\pi_{j}}
$$

Then, denoting $\hat{s}_{\geqslant}:=s \geqslant+\Pi_{r} x$,

$$
P_{<}\left(\frac{\partial s}{\partial p} R_{i}\right)=P_{<}\left(\frac{\partial(\hat{s} \geqslant+E)}{\partial p} R_{i}\right)+P_{<}\left(\frac{\partial\left(s_{<}-E\right)}{\partial p} R_{i}\right)
$$

On the one hand we note that from (47) and (45) we have

$$
\frac{\partial(\hat{s} \geqslant+E)}{\partial p}=p^{-r}\left(\prod_{i=1}^{N}\left(p-p_{i}\right)\right)\left(\alpha_{0}+\alpha_{1} p+\cdots\right)
$$

and hence

$$
\frac{\partial\left(\hat{s}_{\geqslant}+E\right)}{\partial p} R_{i}=p^{1-r}\left(\alpha_{0}+\alpha_{1} p+\cdots\right) \sum_{j=1}^{N} \rho_{i j}\left(\prod_{\substack{l=1, \ldots, N \\ l \neq j}}\left(p-p_{l}\right)\right) \in \mathfrak{g}_{\geqslant},
$$

so that

$$
P_{<}\left(\frac{\partial(\hat{s} \geqslant+E)}{\partial p} R_{i}\right)=0 .
$$

On the other hand, we have the formula

$$
P_{<}\left(\frac{\partial s_{<}}{\partial p} R_{i}\right)=\frac{\partial s_{<}}{\partial p} R_{i}
$$

which follows from $R_{i}=O(1)$ when $p \rightarrow \infty$ and $\frac{\partial s_{<}}{\partial p} \in \mathfrak{g}_{<}$, and we have the relation

$$
P_{<}\left(\frac{\partial E}{\partial p} R_{i}\right)=p^{1-r} \sum_{j=1}^{N} \frac{\rho_{i j} f_{j}}{p-p_{j}}
$$

Therefore,

$$
P_{<}\left(\frac{\partial\left(s_{<}-E\right)}{\partial p} R_{i}\right)=\frac{\partial s_{<}}{\partial p} R_{i}-p^{1-r} \sum_{j=1}^{N} \frac{\rho_{i j} f_{j}}{p-p_{j}} .
$$

Coming back to (48) we get

$$
\frac{\partial s(p(L, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=\frac{\partial s_{<}}{\partial p} R_{i}+\frac{\partial s_{<}}{\partial U_{i}}-p^{1-r} \sum_{j=1}^{N} \frac{\rho_{i j} f_{j}}{p-p_{j}}
$$

which vanishes in virtue of (43).

4.3. Hydrodynamic-type systems and the r-dmKP hierarchy

Here we shall briefly discuss how the reduction scheme derived from (26) is associated with hydrodynamic-type systems. First, we remark that, assuming L to be regular at the points $p=\pi_{i}, i=1, \ldots, N$, we have

$$
\left.\frac{\partial L}{\partial p}\right|_{p=\pi_{i}}=0
$$

so that (6) implies

$$
\sum_{j=1}^{N} \ell_{i j} \frac{\partial U_{j}}{\partial t_{n}}=D_{i n} \sum_{j=1}^{N} \ell_{i j} \frac{\partial U_{j}}{\partial x}
$$

where

$$
L_{i}:=\left.L\right|_{p=\pi_{i}}, \quad D_{i n}:=\left.\pi_{i}^{r} \frac{\partial \Omega_{n}}{\partial p}\right|_{p=\pi_{i}}, \quad \ell_{i j}:=\frac{\partial L_{i}}{\partial U_{j}}
$$

Thus, if we define the following matrices:

$$
D_{n}:=\operatorname{diag}\left(D_{1 n}, \ldots, D_{N n}\right), \quad \ell:=\left(\ell_{i j}\right), \quad A_{n}:=\ell^{-1} D_{n} \ell,
$$

we have the following hydrodynamic-type system:

$$
\frac{\partial \boldsymbol{U}}{\partial t_{n}}=A_{n}(\boldsymbol{U}) \frac{\partial \boldsymbol{U}}{\partial x}
$$

Let us study in more detail the t_{1}-flow, as we know

$$
\Omega_{1}=p^{2-r}+(2-r) u_{0} p^{1-r}
$$

so that

$$
\begin{equation*}
\frac{\partial L}{\partial t_{1}}=(2-r)\left(\left(p+(1-r) u_{0}\right) \frac{\partial L}{\partial x}-p \frac{\partial u_{0}}{\partial x} \frac{\partial L}{\partial p}\right) \tag{50}
\end{equation*}
$$

which implies

$$
\frac{\partial u_{n}}{\partial t_{1}}=(2-r)\left(\frac{\partial u_{n+1}}{\partial x}+(1-r) u_{0} \frac{\partial u_{n}}{\partial x}+n u_{n} \frac{\partial u_{0}}{\partial x}\right), \quad n \geqslant 0
$$

which we may think of as an r-modified Benney moment equations-recall that in the dispersionless KP hierarchy the first non-trivial flow comprises precisely the Benney moment equations.

If we define

$$
\Delta_{n}:=p^{r} \frac{\partial \Omega_{n}}{\partial p} \quad \Rightarrow \quad \Delta_{1}=(2-r)\left(p+(1-r) u_{0}\right)
$$

we may write

$$
A_{n}=\Delta_{n}\left(\hat{A}_{1}\right), \quad \hat{A}_{1}:=\frac{A_{1}}{2-r}-(1-r) u_{0}
$$

which is equivalent to the Kodama-Gibbons formula for the dispersionless KP equation [12]. The relevance of the r-modified Benney equations also appears in relation to the reduction (26). If we introduce the reduction in (50) we get

$$
\sum_{j=1}^{N}\left(\sum_{i=1}^{N} \frac{\partial L}{\partial U_{i}}\left(\hat{A}_{1, i j}-p \delta_{i j}\right)+p \frac{\partial u_{0}}{\partial U_{j}} \frac{\partial L}{\partial p}\right) \frac{\partial U_{j}}{\partial x}=0
$$

and assuming the linear independence of $\frac{\partial U_{j}}{\partial x}, j=1, \ldots, N$, we have

$$
R_{i}=p \sum_{j=1}^{N}\left(\hat{A}_{1}-p\right)_{j i}^{-1} \frac{\partial u_{0}}{\partial U_{j}}
$$

4.4. Examples of hodograph solutions of the r-dmKP hierarchy

We analyse here some solutions derived from proposition 8 of the r-dmKP system (7), which implies the r-dmKP equation (8). As we are interested in (7) we shall set $t_{n}=0$ for $n=3,4, \ldots$ For the Ω we have

$$
\begin{aligned}
& \Omega_{1}=p^{2-r}+(2-r) u_{0} p^{1-r}, \\
& \Omega_{2}=p^{3-r}+(3-r) u_{0} p^{2-r}+(3-r)\left(u_{1}+\frac{2-r}{2} u_{0}^{2}\right) p^{1-r} .
\end{aligned}
$$

4.4.1. One-component reduction. For $N=1$ there are no compatibility conditions to fulfil and therefore we may take

$$
R_{1}=-\frac{p}{p-\pi_{1}(U)}, \quad U=U_{1}
$$

Equations (31) are

$$
\frac{\partial u_{0}}{\partial U}=1, \quad \frac{\partial u_{1}}{\partial U}=\pi_{1}, \quad \frac{\partial u_{2}}{\partial U}=\pi_{1}^{2}-u_{1},
$$

so that we may take
$u_{0}=U, \quad u_{1}=\int^{U} \pi_{1}(s) \mathrm{d} s, \quad u_{2}=\int^{U} \pi_{1}(s)^{2} \mathrm{~d} s-\int^{U}\left(\int^{s} \pi_{1}\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right) \mathrm{d} s$.

In this situation $\hat{s} \geqslant$ is
$\hat{s} \geqslant=\left(p^{3-r}+(3-r) u_{0} p^{2-r}+(3-r)\left(u_{1}+\frac{2-r}{2} u_{0}^{2}\right) p^{1-r}\right) t_{2}$

$$
+\left(p^{2-r}+(2-r) u_{0} p^{1-r}\right) t_{1}+\Pi_{r} x .
$$

Therefore, the hodograph condition (45) is
$(3-r)\left(\pi_{1}^{2}+(2-r) u_{0} \pi_{1}+(1-r)\left(u_{1}+\frac{2-r}{2} u_{0}^{2}\right)\right) t_{2}$

$$
+(2-r)\left(\pi_{1}+(1-r) u_{0}\right) t_{1}+x+f(U)=0
$$

where f is an arbitrary function. If we now introduce formulae (51) we get the following.
Proposition 9. Given two arbitrary functions $\pi_{1}(U), f(U)$ and a function $U\left(x, t_{1}, t_{2}\right)$ determined by the hodograph equation

$$
\begin{gather*}
(3-r)\left(\pi_{1}(U)^{2}+(2-r) U \pi_{1}(U)+(1-r)\left(\int^{U} \pi_{1}(s) \mathrm{d} s+\frac{2-r}{2} U^{2}\right)\right) t_{2} \\
+(2-r)\left(\pi_{1}(U)+(1-r) U\right) t_{1}+x+f(U)=0 \tag{52}
\end{gather*}
$$

then
$u_{0}=U, \quad u_{1}=\int^{U} \pi_{1}(s) \mathrm{d} s, \quad u_{2}=\int^{U} \pi_{1}(s)^{2} \mathrm{~d} s-\int^{U} \int^{s} \pi_{1}\left(s^{\prime}\right) \mathrm{d} s^{\prime} \mathrm{d} s$.
solve the r-dmKP system (7).
While this is a consequence of proposition 8 the following direct proof is available.
Proof. If we use u_{0}, u_{1} and u_{2} as in (51) to solve the system of PDE's (7) then $U\left(x, t_{1}, t_{2}\right)$ satisfy
$\frac{U_{t_{1}}}{U_{x}}=(2-r)\left(\pi_{1}(U)+(1-r) U\right)$,
$\frac{U_{t_{2}}}{U_{x}}=(3-r)\left(\pi_{1}(U)^{2}+(2-r) U \pi_{1}(U)+(1-r)\left(\int^{U} \pi_{1}(s) \mathrm{d} s+\frac{2-r}{2} U^{2}\right)\right)$.
But, taking x, t_{1} and t_{2} derivatives in (52) we get

$$
\begin{aligned}
& \left(f^{\prime}(U)+B^{\prime}(U) t_{2}+A^{\prime}(U) t_{1}\right) U_{x}+1=0, \\
& \left(f^{\prime}(U)+B^{\prime}(U) t_{2}+A^{\prime}(U) t_{1}\right) U_{t_{1}}+A(U)=0, \\
& \left(f^{\prime}(U)+B^{\prime}(U) t_{2}+A^{\prime}(U) t_{1}\right) U_{t_{2}}+B(U)=0,
\end{aligned}
$$

where
$A:=(2-r)\left(\pi_{1}(U)+(1-r) U\right)$,
$B:=(3-r)\left(\pi_{1}(U)^{2}+(2-r) U \pi_{1}(U)+(1-r)\left(\int^{U} \pi_{1}(s) \mathrm{d} s+\frac{2-r}{2} U^{2}\right)\right)$,
which imply (54). Thus, solutions $U\left(x, t_{1}, t_{2}\right)$ of (52) provide us with solutions to (7).
A simple solution appears with the choice $\pi_{1}=k U, f:=0$. Observe that we are dealing, as follows from (26), with the following reduction:

$$
L= \begin{cases}p \mathrm{e}^{U p^{-1}}, & k=1 \\ p\left(1+(1-k) U p^{-1}\right)^{\frac{1}{1-k}}, & k \neq 1\end{cases}
$$

If this is the case we get

$$
A=\alpha U \quad B:=\beta U^{2}
$$

with
$\alpha:=(2-r)(k+1-r), \quad \beta:=(3-r)\left(k^{2}+(5-3 r) k+\frac{(1-r)(2-r)}{2}\right)$
and the corresponding solution, for $\beta \neq 0$, is

$$
\begin{equation*}
u_{0}=U=-\frac{\alpha t_{1}}{2 \beta t_{2}} \pm \sqrt{\frac{\alpha^{2} t_{1}^{2}}{4 \beta^{2} t_{2}^{2}}-\frac{x}{\beta t_{2}}} \tag{55}
\end{equation*}
$$

There are two particular values for k

$$
k=-(2-r),-\frac{1-r}{2}
$$

such that

$$
\beta=0 \quad \text { and } \quad \alpha=-(2-r) \quad \text { and } \quad \frac{(2-r)(1-r)}{2} \text {, respectively. }
$$

In this case we get two simple t_{2}-invariant solutions

$$
u_{0}= \begin{cases}-\frac{x}{(2-r) t_{1}} & \text { for } \quad k=r-2 \\ \frac{2 x}{(1-r)(2-r) t_{1}} & \text { for } \quad k=(r-1) / 2\end{cases}
$$

For example, if instead of $f=0$ we set $f=U^{3}$ we get the solution

$$
u_{0}=U=g-\frac{3 \alpha t_{1}-\beta^{2} t_{2}^{2}}{9 g}-\frac{\beta t_{2}}{3}
$$

where g is defined by

$$
\left.\begin{array}{rl}
g:= & \frac{1}{6}(-108 x
\end{array}\right)+36 \alpha \beta t_{1} t_{2}-8 \beta^{2} t_{2}^{2} .
$$

For $\beta=0$ we get the following t_{2}-independent solution:
$u_{0}=U=g-\frac{3 \alpha t_{1}}{9 g}, \quad$ where $\quad g:=\frac{1}{6} \sqrt[3]{-108 x+12 \sqrt{81 x^{2}+12 \alpha^{3} t_{1}^{3}}}$

$$
\text { for } \quad \alpha=-(2-r), \frac{(2-r)(1-r)}{2} \text {. }
$$

4.4.2. Two-component reduction. We shall work with the diagonal reduction given by (41a) and (41b). We may take the following solution for $N=2$:

$$
\pi_{1}=-\pi_{2}=\frac{U_{1}-U_{2}}{4}, \quad \rho_{1}=\rho_{2}=-\frac{1}{2}
$$

The linear system (44) for f_{1}, f_{2} becomes

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial U_{2}}=\frac{\partial f_{2}}{\partial U_{1}}=-\frac{2 r-1}{2\left(U_{1}-U_{2}\right)}\left(f_{1}-f_{2}\right) \tag{56}
\end{equation*}
$$

which is equivalent to

$$
f_{1}=\frac{\partial \Phi}{\partial U_{1}}, \quad f_{2}=\frac{\partial \Phi}{\partial U_{2}},
$$

with

$$
\frac{\partial^{2} \Phi}{\partial U_{1} \partial U_{2}}+\frac{2 r-1}{2\left(U_{1}-U_{2}\right)}\left(\frac{\partial \Phi}{\partial U_{1}}-\frac{\partial \Phi}{\partial U_{2}}\right)=0
$$

The method of separation of variables leads to the following solutions, expressed in terms of the Bessel and Neumann functions J_{-r}, N_{-r} (the Neumann function is also known as the Weber function Y_{-r}), for a similar result for the dKP hierarchy see [18]:

$$
\begin{aligned}
\Phi=\left(U_{1}-U_{2}\right)^{r} & \left(A J_{-r}\left(k\left(U_{1}-U_{2}\right)\right)\right. \\
& \left.+B N_{-r}\left(k\left(U_{1}-U_{2}\right)\right)\right)\left(C \cos \left(k\left(U_{1}+U_{2}\right)\right)+D \sin \left(k\left(U_{1}+U_{2}\right)\right)\right)
\end{aligned}
$$

and also

$$
\Phi= \begin{cases}\left(A+B\left(U_{1}-U_{2}\right)^{2 r}\right)\left(C+D\left(U_{1}+U_{2}\right)\right), & r \neq 0 \\ \left(A+B \log \left(U_{1}-U_{2}\right)\right)\left(C+D\left(U_{1}+U_{2}\right)\right), & r=0\end{cases}
$$

From

$$
\frac{\partial u_{0}}{\partial U_{i}}=\frac{1}{2}, \quad \frac{\partial u_{1}}{\partial U_{i}}=\frac{1}{2} \pi_{i}, \quad \frac{\partial u_{2}}{\partial U_{i}}=\frac{1}{2}\left(\pi_{i}^{2}-u_{1}\right)
$$

for $i=1,2$, we get

$$
u_{0}=\frac{U_{1}+U_{2}}{2}, \quad u_{1}=\frac{\left(U_{1}-U_{2}\right)^{2}}{16}, \quad u_{2}=0
$$

From the formulae

$$
\begin{aligned}
& \pi_{i}^{2}+(2-r) u_{0} \pi_{i}+(1-r)\left(u_{1}+\frac{2-r}{2} u_{0}^{2}\right) \\
& = \begin{cases}\frac{2-r}{2}\left((1-r) U_{+}^{2}+\frac{1}{2} U_{-}^{2}+U_{+} U_{-}\right), & i=1, \\
\frac{2-r}{2}\left((1-r) U_{+}^{2}+\frac{1}{2} U_{-}^{2}-U_{+} U_{-}\right), & i=2,\end{cases} \\
& \pi_{i}+(1-r) u_{0}= \begin{cases}(1-r) U_{+}+\frac{1}{2} U_{-}, & i=1, \\
(1-r) U_{+}-\frac{1}{2} U_{-}, & i=2,\end{cases}
\end{aligned}
$$

where

$$
U_{ \pm}:=\frac{U_{1} \pm U_{2}}{2}
$$

we deduce the following hodograph system:

$$
\begin{align*}
& \frac{(3-r)(2-r)}{2}\left((1-r) U_{+}^{2}+\frac{1}{2} U_{-}^{2}+U_{+} U_{-}\right) t_{2}+(2-r)\left((1-r) U_{+}+\frac{1}{2} U_{-}\right) t_{1}+x=f_{1} \\
& \frac{(3-r)(2-r)}{2}\left((1-r) U_{+}^{2}+\frac{1}{2} U_{-}^{2}-U_{+} U_{-}\right) t_{2}+(2-r)\left((1-r) U_{+}-\frac{1}{2} U_{-}\right) t_{1}+x=f_{2} \tag{57}
\end{align*}
$$

Adding and subtracting the equations of (57) we obtain the equivalent system
$\frac{(3-r)(2-r)}{2}\left((1-r) U_{+}^{2}+\frac{U_{-}^{2}}{2}\right) t_{2}+(2-r)(1-r) U_{+} t_{1}+x=\frac{f_{1}+f_{2}}{2}$,
$(3-r)(2-r) U_{+} U_{-} t_{2}+(2-r) U_{-} t_{1}=f_{1}-f_{2}$.
The simplest solution of (56) is $f_{1}=f_{2}=0$; i.e., $\Phi=0$, in this case there are two possible choices

$$
U_{-}=0 \quad \text { or } \quad U_{+}=-\frac{1}{3-r} \frac{t_{1}}{t_{2}}
$$

The first choice implies $u_{1}=U_{-}^{2} / 4=0$ and $u_{0}=U_{+}$to solve the algebraic equation

$$
\frac{(3-r)(2-r)(1-r)}{2} t_{2} U_{+}^{2}+(2-r)(1-r) t_{1} U_{+}+x=0
$$

whose solutions are

$$
u_{0}=U_{+}=-\frac{t_{1}}{(3-r) t_{2}} \pm \sqrt{\frac{t_{1}^{2}}{(3-r)^{2} t_{2}^{2}}-\frac{2 x}{(3-r)(2-r)(1-r) t_{2}}}
$$

In fact, for $u_{1}=u_{2}=0$ the system (7) becomes

$$
u_{0, t_{1}}=(2-r)(1-r) u_{0} u_{0, x}, \quad u_{0, t_{2}}=\frac{1}{2}(3-r)(2-r)(1-r) u_{0}^{2} u_{0, x}
$$

i.e., the dispersionless KdV (t_{1}-flow) and dispersionless modified KdV (t_{2}-flow) equations, and $u_{0}=U_{+}$is a solution of both simultaneously. This solution is a particular case of the already studied one-component solution (55); i.e. $\pi_{1}=k U$, for $k=0$ but this value of k is not allowed as we assume that $\pi_{1} \neq 0$, therefore the two-component case, with $\pi_{1}=-\pi_{2}=\left(U_{1}-U_{2}\right) / 4$, provides us with a rigorous alternative track to this solution.

The second choice

$$
u_{0}=U_{+}=-\frac{1}{3-r} \frac{t_{1}}{t_{2}}
$$

implies

$$
u_{1}=\frac{U_{-}^{2}}{4}=\frac{(1-r) t_{1}^{2}}{2(3-r)^{2}} \frac{t_{1}^{2}}{t_{2}^{2}}-\frac{1}{(3-r)(2-r)} \frac{x}{t_{2}}
$$

It is easy to check that this pair u_{0}, u_{1} fulfils the $u_{2}=0$ reduction of (7), namely

$$
\begin{aligned}
& u_{0, t_{1}}=(2-r) u_{1, x}+(2-r)(1-r) u_{0} u_{0, x} \\
& u_{1, t_{1}}=(2-r)(1-r) u_{0} u_{1, x}+(2-r) u_{1} u_{0, x} \\
& u_{0, t_{2}}=(3-r)(2-r)\left(u_{0} u_{1, x}+u_{0, x} u_{1}\right)+\frac{1}{2}(3-r)(2-r)(1-r) u_{0}^{2} u_{0, x}
\end{aligned}
$$

A more general choice is to take $\Phi=\Phi_{+}\left(U_{+}\right) \Phi_{-}\left(U_{-}\right)$, then

$$
\begin{aligned}
& f_{1}=\frac{1}{2}\left(\Phi_{+}^{\prime}\left(U_{+}\right) \Phi_{-}\left(U_{-}\right)+\Phi_{+}\left(U_{+}\right) \Phi_{-}^{\prime}\left(U_{-}\right)\right) \\
& f_{2}=\frac{1}{2}\left(\Phi_{+}^{\prime}\left(U_{+}\right) \Phi_{-}\left(U_{-}\right)-\Phi_{+}\left(U_{+}\right) \Phi_{-}^{\prime}\left(U_{-}\right)\right)
\end{aligned}
$$

and, if we assume $\Phi_{-}^{\prime} \neq 0$, the hodograph system (58) reads
$\frac{(3-r)(2-r)}{2}\left((1-r) U_{+}^{2}+\frac{U_{-}^{2}}{2}\right) t_{2}+(2-r)(1-r) U_{+} t_{1}+x=\frac{\Phi_{+}^{\prime}\left(U_{+}\right) \Phi_{-}\left(U_{-}\right)}{4}$,
$U_{-}\left((3-r)(2-r) U_{+} t_{2}+(2-r) t_{1}\right)=\frac{\Phi_{+}\left(U_{+}\right) \Phi_{-}^{\prime}\left(U_{-}\right)}{2}$.
Picking, for example, $\Phi_{-}=U_{-}^{2 r}, \Phi_{+}=A+B U_{+}$we have for $u_{1}=U_{-}^{2} / 4$

$$
u_{1}=\frac{1}{4} U_{-}^{2}=\frac{1}{4}\left(\frac{r\left(A+B U_{+}\right)}{(2-r) t_{1}+(3-r)(2-r) t_{2} U_{+}}\right)^{\frac{1}{1-r}}
$$

and $u_{0}=U_{+}$is implicitly determined by
$\frac{(3-r)(2-r)(1-r)}{2} t_{2} U_{+}^{2}+(2-r)(1-r) t_{1} U_{+}+x=\frac{B}{4}\left(4 u_{1}\right)^{r}-(3-r)(2-r) t_{2} u_{1}$.

4.5. Reductions for the $r-d D y m$ hierarchy

Here we tackle the reduction (27) with \tilde{R}_{i} as in (30) for the r-dDym hierarchy. Let us introduce $s_{\leqslant} \in \mathfrak{g}_{\leqslant}$satisfying

$$
\begin{equation*}
\frac{\partial \tilde{s}_{\leqslant}}{\partial p} \tilde{R}_{i}+\frac{\partial \tilde{s}_{\leqslant}}{\partial U_{i}}=p^{2-r} \sum_{j=1}^{N} \frac{\tilde{\rho}_{i j} \tilde{f}_{j}}{p-\tilde{\pi}_{j}} \tag{60}
\end{equation*}
$$

Here we assume the compatibility conditions for (60)
$\tilde{\rho}_{i l} \frac{\partial \tilde{f}_{l}}{\partial U_{j}}-\tilde{\rho}_{j l} \frac{\partial \tilde{f}_{l}}{\partial U_{i}}=-\sum_{k \neq l}\left(\tilde{\rho}_{i k} \tilde{\rho}_{j l}-\tilde{\rho}_{i l} \tilde{\rho}_{j k}\right)\left(-(1-r)+\frac{\tilde{\pi}_{k}}{\tilde{\pi}_{l}-\tilde{\pi}_{k}}\right) \frac{\tilde{f}_{l}-\tilde{f}_{k}}{\tilde{\pi}_{l}-\tilde{\pi}_{k}}$,
that for the diagonal reduction $\tilde{\rho}_{i j}=\tilde{\rho}_{i} \delta_{i j}$ are

$$
\begin{equation*}
\frac{\partial \tilde{f}_{i}}{\partial U_{j}}=\left(-(1-r)+\frac{\tilde{\pi}_{j}}{\tilde{\pi}_{i}-\tilde{\pi}_{j}}\right) \frac{\tilde{\rho}_{j} \tilde{\pi}_{i}}{\tilde{\pi}_{i}-\tilde{\pi}_{j}}\left(\tilde{f}_{i}-\tilde{f}_{j}\right) . \tag{61}
\end{equation*}
$$

We have
Proposition 10. Let $\tilde{s}_{\leqslant}(p, \boldsymbol{U}) \in \mathfrak{g}_{\leqslant}$satisfying (60) and define

$$
\begin{aligned}
& \tilde{s}_{>}(p, \boldsymbol{U}, \boldsymbol{t}):=\sum_{n=1}^{\infty} t_{n} \tilde{\Omega}_{n}(p, \boldsymbol{U}) \\
& \tilde{s}^{(p, \boldsymbol{U}, x, \boldsymbol{t})}:=\tilde{s}_{>}(p, \boldsymbol{U}, \boldsymbol{t})+\Pi_{r}(p) x+\tilde{s}_{\leqslant}(p, \boldsymbol{U}) .
\end{aligned}
$$

Suppose that $\boldsymbol{U}=\boldsymbol{U}(x, \boldsymbol{t})$ is determined by the following hodograph system:

$$
\begin{equation*}
\sum_{n=1}^{\infty} t_{n} \frac{\partial \tilde{\Omega}_{n}}{\partial p}\left(\tilde{\pi}_{i}(\boldsymbol{U}), \boldsymbol{U}\right)+x \tilde{\pi}_{i}(\boldsymbol{U})^{-r}+\tilde{\pi}_{i}(\boldsymbol{U})^{-r} \tilde{f}_{i}(\boldsymbol{U})=0, \quad i=1, \ldots, N \tag{62}
\end{equation*}
$$

Then,

$$
\tilde{S}(\tilde{L}, x, \boldsymbol{t}):=\tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})
$$

is an S-function for the r-dDym hierarchy.

Proof. The lines of this proof are almost identical to those followed in proposition 8 for the r-dmKP hierarchy. First we observe that

$$
\begin{aligned}
& \frac{\partial \tilde{S}}{\partial t_{n}}=\tilde{\omega}_{n}(\tilde{L}, \boldsymbol{U})+\left.\sum_{i=1}^{N} \frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}\right|_{\boldsymbol{U}=\boldsymbol{U}(t)} \frac{\partial U_{i}}{\partial t_{n}} \\
& \frac{\partial \tilde{S}}{\partial x}=\Pi_{r}+\left.\sum_{i=1}^{N} \frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}\right|_{\boldsymbol{U}=\boldsymbol{U}(t)} \frac{\partial U_{i}}{\partial x}
\end{aligned}
$$

and our result shall follow if the formula

$$
\left.\frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}\right|_{\boldsymbol{U}=\boldsymbol{U}(\boldsymbol{t})}=0
$$

is satisfied. We shall proceed observing that

$$
\begin{equation*}
\frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=\frac{\partial \tilde{s}}{\partial p} \tilde{R}_{i}+\frac{\partial \tilde{s}}{\partial U_{i}} \tag{63}
\end{equation*}
$$

Let us multiply (60) by $\prod_{l=1}^{N}\left(p-\tilde{\pi}_{l}\right)$, also recall that \tilde{s}_{\leqslant}is regular at $p=\tilde{\pi}_{i}$, and then take the limit $p \rightarrow \tilde{\pi}_{i}$ in order to get

$$
\left.\frac{\partial \tilde{s}_{\leqslant}}{\partial p}\right|_{p=\tilde{\pi}_{i}}=\tilde{\pi}_{i}^{-r} \tilde{f}_{i}
$$

and from (62) we obtain

$$
\begin{equation*}
\left.\frac{\partial \tilde{s}}{\partial p}\right|_{p=\tilde{\pi}_{i}}=0 \tag{64}
\end{equation*}
$$

We note that

$$
\frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=\sum_{n=1}^{\infty} t_{n} \frac{\partial \tilde{\omega}_{n}(\tilde{L}, \boldsymbol{U})}{\partial U_{i}}+x p(\tilde{L}, \boldsymbol{U})^{-r} \frac{\partial \tilde{p}(\tilde{L}, \boldsymbol{U})}{\partial U_{i}}+\frac{\partial \tilde{s}_{\leqslant}}{\partial U_{i}}
$$

and also that
$\tilde{\omega}_{n}(\tilde{L}, \boldsymbol{U}):=\tilde{\Omega}_{n}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U})=\tilde{L}^{n+1-r}-P_{\leqslant}\left(\tilde{L}^{n+1-r}\right) \quad \Rightarrow \quad \frac{\partial \tilde{\omega}_{n}(\tilde{L}, \boldsymbol{U})}{\partial U_{i}} \in \mathfrak{g}_{\leqslant}$, and if $r \neq 1$

$$
p(\tilde{L}, \boldsymbol{U})^{1-r} \in \mathfrak{g}_{\leqslant} \Rightarrow p(\tilde{L}, \boldsymbol{U})^{-r} \frac{\partial p(\tilde{L}, \boldsymbol{U})}{\partial U_{i}} \in \mathfrak{g} \leqslant
$$

Finally, for $r=1, \frac{\partial p}{\partial U_{i}}=O(p)$ when $p \rightarrow \infty \Rightarrow p^{-1} \frac{\partial p}{\partial U_{i}} \in \mathfrak{g}_{\leqslant}$.
Therefore, we can write

$$
\frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, \boldsymbol{t})}{\partial U_{i}} \in \mathfrak{g}_{\leqslant}
$$

and from (63) we deduce that

$$
\begin{equation*}
\frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=P_{\leqslant}\left(\frac{\partial \tilde{s}}{\partial p} \tilde{R}_{i}\right)+\frac{\partial \tilde{s}_{\leqslant}}{\partial U_{i}} . \tag{65}
\end{equation*}
$$

Following the r-dmKP case we now introduce a function $\tilde{E}=\tilde{E}(p, \boldsymbol{U}) \in \mathfrak{g} \geqslant$ such that

$$
\begin{equation*}
\frac{\partial \tilde{E}}{\partial p}\left(\tilde{\pi}_{i}, \boldsymbol{U}\right)=\tilde{\pi}_{i}^{-r} f_{i}(\boldsymbol{U}) \tag{66}
\end{equation*}
$$

for example we may take

$$
\frac{\partial \tilde{E}}{\partial p}=p^{-r} \sum_{i=1}^{N} \tilde{f}_{i} \prod_{j \neq i} \frac{p-\tilde{\pi}_{j}}{\tilde{\pi}_{i}-\tilde{\pi}_{j}}
$$

Let us study the following equation:

$$
P_{\leqslant}\left(\frac{\partial \tilde{s}}{\partial p} \tilde{R}_{i}\right)=P_{\leqslant}\left(\frac{\partial\left(\tilde{s}_{>}+x \Pi_{r}+\tilde{E}\right)}{\partial p} \tilde{R}_{i}\right)+P_{\leqslant}\left(\frac{\partial\left(\tilde{s}_{\leqslant}-\tilde{E}\right)}{\partial p} \tilde{R}_{i}\right) .
$$

For the first term in the rhs we see that, as follows from (64),

$$
\frac{\partial\left(\tilde{s}_{>}+x \Pi_{r}+\tilde{E}\right)}{\partial p}=p^{-r}\left(\prod_{i=1}^{N}\left(p-\tilde{\pi}_{i}\right)\right)\left(\alpha_{0}+\alpha_{1} p+\cdots\right),
$$

and hence

$$
\frac{\partial\left(\tilde{s}_{>}+x \Pi_{r}+\tilde{E}\right)}{\partial p} \tilde{R}_{i}=p^{2-r}\left(\alpha_{0}+\alpha_{1} p+\cdots\right) \sum_{j=1}^{N} \tilde{\rho}_{i j}\left(\prod_{\substack{l=1, \ldots, N \\ l \neq j}}\left(p-\tilde{\pi}_{l}\right)\right) \in \mathfrak{g}_{>},
$$

so that

$$
P_{\leqslant}\left(\frac{\partial\left(\tilde{s}_{>}+x \Pi_{r}+E\right)}{\partial p} \tilde{R}_{i}\right)=0 .
$$

We also deduce that

$$
P_{\leqslant}\left(\frac{\partial \tilde{s}_{\leqslant}}{\partial p} \tilde{R}_{i}\right)=\frac{\partial \tilde{s}_{\leqslant}}{\partial p} \tilde{R}_{i},
$$

which is a direct consequence of $\tilde{R}_{i}=O(p)$ when $p \rightarrow \infty$ and $\frac{\partial \tilde{s}_{\leq}}{\partial p} \in \mathfrak{g}_{\leq}$. Another relevant formula is

$$
P_{\leqslant}\left(\frac{\partial \tilde{E}}{\partial p} \tilde{R}_{i}\right)=p^{2-r} \sum_{j=1}^{N} \frac{\tilde{\rho}_{i j} \tilde{f}_{j}}{p-\tilde{\pi}_{j}} .
$$

With all these formulae at hand we deduce

$$
P_{\leqslant}\left(\frac{\partial\left(\tilde{s}_{\leqslant}-\tilde{E}\right)}{\partial p} \tilde{R}_{i}\right)=\frac{\partial \tilde{s}_{\leqslant}}{\partial p} \tilde{R}_{i}-p^{2-r} \sum_{j=1}^{N} \frac{\tilde{\rho}_{i j} \tilde{f}_{j}}{p-\tilde{\pi}_{j}}
$$

Coming back to (65) we get

$$
\frac{\partial \tilde{s}(p(\tilde{L}, \boldsymbol{U}), \boldsymbol{U}, x, \boldsymbol{t})}{\partial U_{i}}=\frac{\partial \tilde{s}_{\leqslant}}{\partial p} \tilde{R}_{i}+\frac{\partial \tilde{s}_{\leqslant}}{\partial U_{i}}-p^{1-r} \sum_{j=1}^{N} \frac{\tilde{\rho}_{i j} \tilde{f}_{j}}{p-\tilde{\pi}_{j}}
$$

which vanishes in virtue of (60).

4.6. Hydrodynamic-type systems and the r-dDym hierarchy

Here we proceed as in section 4.3. With the use of (12), together with $\left.\frac{\partial \tilde{L}}{\partial p}\right|_{p=\tilde{\pi}_{i}}=0$, and of the notation

$$
\begin{array}{lll}
\tilde{L}_{i}:=\left.\tilde{L}\right|_{p=\tilde{\pi}_{i}}, & \tilde{D}_{i n}:=\left.\tilde{\pi}_{i}^{r} \frac{\partial \tilde{\Omega}_{n}}{\partial p}\right|_{p=\tilde{\pi}_{i}}, & \tilde{\ell}_{i j}:=\frac{\partial \tilde{L}_{i}}{\partial U_{j}}, \\
\tilde{D}_{n}:=\operatorname{diag}\left(\tilde{D}_{1 n}, \ldots, \tilde{D}_{N n}\right), & \tilde{\ell}:=\left(\tilde{\ell}_{i j}\right), & \tilde{A}_{n}:=\tilde{\ell}^{-1} \tilde{D}_{n} \tilde{\ell}
\end{array}
$$

we derive the following hydrodynamic-type system:

$$
\frac{\partial \boldsymbol{U}}{\partial t_{n}}=\tilde{A}_{n}(\boldsymbol{U}) \frac{\partial \boldsymbol{U}}{\partial x}
$$

To analyse the t_{1}-flow, we recall that

$$
\tilde{\Omega}_{1}=v^{2-r} p^{2-r}
$$

and therefore

$$
\begin{equation*}
\frac{\partial \tilde{L}}{\partial t_{1}}=(2-r) v^{1-r} p\left(v \frac{\partial \tilde{L}}{\partial x}-p \frac{\partial v}{\partial x} \frac{\partial \tilde{L}}{\partial p}\right) \tag{67}
\end{equation*}
$$

that implies the following Benney moment-type equations:

$$
\frac{\partial v_{n}}{\partial t_{1}}=(2-r) v^{1-r}\left(v \frac{\partial v_{n+1}}{\partial x}+(n+1) \frac{\partial v}{\partial x} v_{n+1}\right), \quad n \geqslant-1, \quad v_{-1}:=v
$$

We now define

$$
\tilde{\Delta}_{n}:=p^{r} \frac{\partial \tilde{\Omega}_{n}}{\partial p} \Rightarrow \tilde{\Delta}_{1}=(2-r) v^{2-r} p
$$

so that the corresponding Kodama-Gibbons formula for the r - dDym hierarchy is

$$
\tilde{A}_{n}=\tilde{\Delta}_{n}\left(\hat{\tilde{A}}_{1}\right), \quad \hat{\tilde{A}}_{1}:=\frac{\tilde{A}_{1}}{(2-r) v^{2-r}}
$$

If we introduce the reduction in (67) we get

$$
\sum_{j=1}^{N}\left(\sum_{i=1}^{N} \frac{\partial \tilde{L}}{\partial U_{i}}\left(\hat{\tilde{A}}_{1, i j}-p \delta_{i j}\right)+p^{2} v \frac{\partial v}{\partial U_{j}} \frac{\partial \tilde{L}}{\partial p}\right) \frac{\partial U_{j}}{\partial x}=0
$$

and assuming the linear independence of $\frac{\partial U_{j}}{\partial x}, j=1, \ldots, N$, we have

$$
\tilde{R}_{i}=p^{2} \sum_{j=1}^{N}\left(\hat{\tilde{A}}_{1}-p\right)_{j i}^{-1} v \frac{\partial v}{\partial U_{j}}
$$

4.7. Examples of hodograph solutions of the $r-d D y m$ hierarchy

We are now ready to present here some solutions of the r-dDym system (13), which implies the r-dDym equation (14). We set $t_{n}=0$ for $n=3,4, \ldots$ and recall that

$$
\tilde{\Omega}_{1}=v^{2-r} p^{2-r}, \quad \tilde{\Omega}_{2}=v^{3-r} p^{3-r}+(3-r) v_{0} v^{2-r} p^{2-r}
$$

4.7.1. One-component reduction. We take

$$
\tilde{R}_{1}=-\frac{p^{2}}{p-\tilde{\pi}_{1}(U)}, \quad U=U_{1}
$$

From equations (32) we deduce the following equations:

$$
\begin{equation*}
v_{U}=v, \quad v_{0, U}=\tilde{\pi}_{1} v, \quad v_{1, U}=\tilde{\pi}_{1}^{2} v-v_{1} \tag{68}
\end{equation*}
$$

which are solved by

$$
\begin{equation*}
v=\mathrm{e}^{U}, \quad v_{0}=\int^{U} \tilde{\pi}_{1}(s) \mathrm{e}^{s} \mathrm{~d} s, \quad v_{1}=\mathrm{e}^{-U} \int^{U} \tilde{\pi}_{1}(s)^{2} \mathrm{e}^{2 s} \mathrm{~d} s \tag{69}
\end{equation*}
$$

In this situation $\tilde{s}_{>}$is

$$
\tilde{s}_{>}=\left(v^{3-r} p^{3-r}+(3-r) v_{0} v^{2-r} p^{2-r}\right) t_{2}+\left(v^{2-r} p^{2-r}\right) t_{1} .
$$

Therefore, the hodograph condition (62) is

$$
(3-r) v^{2-r}\left(v \tilde{\pi}_{1}^{2}+(2-r) v_{0} \tilde{\pi}_{1}\right) t_{2}+(2-r) \tilde{\pi}_{1} v^{2-r} t_{1}+x+f(U)=0
$$

where f is an arbitrary function, which taking into account (69) leads to the following.
Proposition 11. Given arbitrary two functions $\tilde{\pi}_{1}(U), f(U)$ and a function $U\left(x, t_{1}, t_{2}\right)$ determined by
$(3-r) \mathrm{e}^{(2-r) U}\left(\mathrm{e}^{U} \tilde{\pi}_{1}(U)^{2}+(2-r) \tilde{\pi}_{1}(U) \int^{U} \tilde{\pi}_{1}(s) \mathrm{e}^{s} \mathrm{~d} s\right) t_{2}$

$$
\begin{equation*}
+(2-r) \tilde{\pi}_{1}(U) \mathrm{e}^{(2-r) U} t_{1}+x+f(U)=0 \tag{70}
\end{equation*}
$$

then

$$
v=\mathrm{e}^{U}, \quad v_{0}=\int^{U} \tilde{\pi}_{1}(s) \mathrm{e}^{s} \mathrm{~d} s, \quad v_{1}=\mathrm{e}^{-U} \int^{U} \tilde{\pi}_{1}(s)^{2} \mathrm{e}^{2 s} \mathrm{~d} s
$$

solve the r-dDym system (13).
This result is a corollary of proposition 10 , however we give a direct proof.
Proof. The imposition to v, v_{0} and v_{1}, as in (68), to solve (13) is equivalent to use $U\left(x, t_{1}, t_{2}\right)$ to fulfil

$$
\begin{align*}
& \frac{U_{t_{1}}}{U_{x}}=(2-r) v^{2-r} \tilde{\pi}_{1}, \tag{71}\\
& \frac{U_{t_{2}}}{U_{x}}=(3-r) v^{2-r}\left(\tilde{\pi}_{1}(U)^{2} v+(2-r) \tilde{\pi}_{1}(U) v_{0}\right) .
\end{align*}
$$

But if we take x, t_{1} and t_{2} derivatives in (70) we get

$$
\begin{aligned}
& \left(f^{\prime}(U)+B^{\prime}(U) t_{2}+A^{\prime}(U) t_{1}\right) U_{x}+1=0, \\
& \left(f^{\prime}(U)+B^{\prime}(U) t_{2}+A^{\prime}(U) t_{1}\right) U_{t_{1}}+A(U)=0, \\
& \left(f^{\prime}(U)+B^{\prime}(U) t_{2}+A^{\prime}(U) t_{1}\right) U_{t_{2}}+B(U)=0,
\end{aligned}
$$

where

$$
\begin{aligned}
& A:=(2-r) v^{2-r} \tilde{\pi}_{1}, \\
& B:=(3-r) v^{2-r}\left(\tilde{\pi}_{1}(U)^{2} v+(2-r) \tilde{\pi}_{1}(U) v_{0}\right),
\end{aligned}
$$

which imply (71) and the desired result follows.
Let us suppose that $\tilde{\pi}_{1}=\mathrm{e}^{k U}$, then (70) is

$$
\frac{(3-r)(3-r+k)}{1+k} t_{2} \mathrm{e}^{(3-r+2 k) U}+(2-r) t_{1} \mathrm{e}^{(2-r+k) U}+x=f .
$$

If we now impose

$$
3-r+2 k=n(2-r+k) \Rightarrow k=\frac{3-r-n(2-r)}{n-2}
$$

we have

$$
\frac{(3-r)(3-r+k)}{1+k} t_{2} \alpha^{n}+(2-r) t_{1} \alpha+x=0
$$

where

$$
\alpha:=\mathrm{e}^{(2-r+k) U}
$$

We now explore in more detail the following three examples:

n	k	Hodograph equation	$v=v(\alpha)$
3	$-3+2 r$	$-\frac{(3-r) r}{2(1-r)} t_{2} \alpha^{3}+C \alpha^{2}+(2-r) t_{1} \alpha+x=0$	$\alpha^{-\frac{1}{1-r}}$
-1	$\frac{-5+2 r}{3}$	$(2-r) t_{1} \alpha^{2}+x \alpha-\frac{(3-r)(4-r)}{2(1-r)} t_{2}=0$	$\alpha^{\frac{3}{1-r}}$
-2	$\frac{-7+3 r}{4}$	$(2-r) t_{1} \alpha^{3}+x \alpha^{2}+C \alpha-\frac{(3-r)(5-r)}{3(1-r)} t_{2}=0$	$\alpha^{\frac{4}{1-r}}$

where C is an arbitrary constant which appears by choosing f in an appropriate manner. The hodograph equations in these cases are explicitly solved, as we are dealing with cubic and a quadratic equations. Now, we present the corresponding solution of the r-dDym equation (14) in the $n=-1$ case:

$$
v=\left(-\frac{1}{2(2-r)} \frac{x}{t_{1}} \pm \sqrt{\frac{1}{4(2-r)^{2}} \frac{x^{2}}{t_{1}^{2}}+\frac{(3-r)(4-r)}{2(1-r)(2-r)} \frac{t_{2}}{t_{1}}}\right)^{\frac{3}{1-r}}
$$

for $n=3, C=0$, the corresponding solution is

$$
v=\left(-\frac{(1-r) g\left(x, t_{1}, t_{2}\right)}{(3-r) r t_{2}}-\frac{2(2-r) t_{1}}{g\left(x, t_{1}, t_{2}\right)}\right)^{-\frac{1}{1-r}}
$$

with

$$
g:=\sqrt[3]{\frac{(3-r)^{2} r^{2}}{4(1-r)^{2}} t_{2}^{2}\left(-108 x+12 \sqrt{3} \sqrt{27 x^{2}-8 \frac{(1-r)(2-r)^{3}}{(3-r) r} \frac{t_{1}^{3}}{t_{2}}}\right)},
$$

and for $n=-2, C=0$

$$
v=\left(\frac{g\left(x, t_{1}, t_{2}\right)}{6(2-r) t_{1}}+\frac{2 x^{2}}{3(2-r) t_{1} g\left(x, t_{1}, t_{2}\right)}-\frac{x}{3(2-r) t_{1}}\right)^{\frac{4}{1-r}}
$$

with

$$
\begin{aligned}
g:=\left(-8 x^{3}\right. & +108 \frac{(2-r)^{2}(3-r)(5-r)}{3(1-r)} t_{1}^{2} t_{2} \\
& \left.+12 \sqrt{3}(2-r) t_{1} \sqrt{\frac{(3-r)(5-r)}{3(1-r)} t_{2}\left(27 \frac{(2-r)^{2}(3-r)(5-r)}{3(1-r)} t_{1}^{2} t_{2}-4 x^{3}\right)}\right)^{\frac{1}{3}} .
\end{aligned}
$$

4.7.2. Two-component reduction. For $N=2$ we take the solution of (41a) and (41b) given by

$$
\tilde{\rho}_{1}=-\tilde{\rho}_{2}=-\frac{2}{U_{1}-U_{2}}, \quad \tilde{\pi}_{1}=-\tilde{\pi}_{2}=\frac{1}{4\left(U_{1}-U_{2}\right)}
$$

We need to handle (72) which in this case reads

$$
\begin{equation*}
\frac{\partial \tilde{f}_{1}}{\partial U_{2}}=\frac{\partial \tilde{f}_{2}}{\partial U_{1}}=-\frac{3-2 r}{2\left(U_{1}-U_{2}\right)}\left(\tilde{f}_{1}-\tilde{f}_{2}\right) \tag{72}
\end{equation*}
$$

which is equivalent to

$$
f_{1}=\frac{\partial \Phi}{\partial U_{1}}, \quad f_{2}=\frac{\partial \Phi}{\partial U_{2}},
$$

with

$$
\frac{\partial^{2} \Phi}{\partial U_{1} \partial U_{2}}+\frac{2 r-3}{2\left(U_{1}-U_{2}\right)}\left(\frac{\partial \Phi}{\partial U_{1}}-\frac{\partial \Phi}{\partial U_{2}}\right)=0 .
$$

The method of separation of variables leads to the following solutions:

$$
\begin{gathered}
\Phi=\left(U_{1}-U_{2}\right)^{r-1}\left(A J_{1-r}\left(k\left(U_{1}-U_{2}\right)\right)+B N_{1-r}\left(k\left(U_{1}-U_{2}\right)\right)\right) \\
\times\left(C \cos \left(k\left(U_{1}+U_{2}\right)\right)+D \sin \left(k\left(U_{1}+U_{2}\right)\right)\right)
\end{gathered}
$$

and also

$$
\Phi= \begin{cases}\left(A+B\left(U_{1}-U_{2}\right)^{2 r-2}\right)\left(C+D\left(U_{1}+U_{2}\right)\right), & r \neq 1, \\ \left(A+B \log \left(U_{1}-U_{2}\right)\right)\left(C+D\left(U_{1}+U_{2}\right)\right), & r=1\end{cases}
$$

From (32) we derive

$$
v=\left(U_{1}-U_{2}\right)^{2}, \quad v_{0}=\frac{U_{1}+U_{2}}{2}, \quad v_{1}=\frac{1}{16}+\frac{1}{\left(U_{1}-U_{2}\right)^{2}},
$$

observe that with this reduction we have $v_{1}=\frac{1}{16}+\frac{1}{v}$. The hodograph system (62) is

$$
\begin{aligned}
& v^{2-r}\left((3-r)\left(\frac{1}{16}+\frac{2-r}{8} \frac{U_{+}}{U_{-}}\right) t_{2}+\frac{2-r}{8} \frac{1}{U_{-}} t_{1}\right)+x+f_{1}=0, \\
& v^{2-r}\left((3-r)\left(\frac{1}{16}-\frac{2-r}{8} \frac{U_{+}}{U_{-}}\right) t_{2}-\frac{2-r}{8} \frac{1}{U_{-}} t_{1}\right)+x+f_{2}=0,
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \frac{3-r}{8} v^{2-r} t_{2}+2 x+f_{1}+f_{2}=0 \\
& \frac{2-r}{4} \frac{v^{2-r}}{U_{-}}\left((3-r) U_{+} t_{2}+t_{1}\right)+f_{1}-f_{2}=0 .
\end{aligned}
$$

When $\Phi=0$ we get the solution
$v=\left(-\frac{16}{3-r} \frac{x}{t_{2}}\right)^{\frac{1}{2-r}}, \quad v_{0}=-\frac{1}{3-r} \frac{t_{1}}{t_{2}}, \quad v_{1}=\frac{1}{16}+\left(-\frac{3-r}{16} \frac{t_{2}}{x}\right)^{\frac{1}{2-r}}$.
Finally, if we set $\Phi=U_{-}^{2 r-2}\left(A+B U_{+}\right)$so that

$$
f_{1}+f_{2}=2 B U_{-}^{2 r-2}, \quad f_{1}-f_{2}=2(2 r-2) U_{-}^{2 r-3}\left(A+B U_{+}\right)
$$

and the hodograph system is

$$
\begin{aligned}
& \frac{3-r}{8} v^{2-r} t_{2}+2 x+2 B U_{-}^{2 r-2}=0 \\
& v^{2-r}\left((3-r) U_{+} t_{2}+t_{1}\right)+\frac{8(2 r-2)}{2-r} U_{-}^{2 r-2}\left(A+B U_{+}\right)=0
\end{aligned}
$$

Observe that the first equation determines U_{-}(or v), and introducing this information in the second we get $U_{+}\left(\right.$or $\left.v_{0}\right)$.

Acknowledgments

The author is indebted to Luis Martínez Alonso and Elena Medina, coauthors of [18], the paper on which the present one is partially based. Partial economical support from Dirección General de Enseñanza Superior e Investigación Científica no BFM2002-01607 is also acknowledged.

References

[1] Błaszak M 2002 Phys. Lett. A 297191
[2] Błaszak M and Szablikowski B M 2003 J. Phys. A: Math. Gen. 3612181 Błaszak M and Szablikowski B M 2002 J. Phys. A: Math. Gen. 3510345 Błaszak M and Szablikowski B M 2002 J. Phys. A: Math. Gen. 3510325
[3] Dubrovin B 1992 Nucl. Phys. B 342627 Dubrovin B and Zhang Y 1998 Commun. Math. Phys. 198311
[4] Dunajski M, Mason L J and Tod K P 2001 J. Geom. Phys. 3763 Dunajski M and Tod K P 2002 Phys. Lett. A 303253
[5] Ferapontov E V, Korotkin D A and Shramchenko V A 2002 Quantum Grav. 19 L1-6 Mañas M and Martínez Alonso L 2002 Preprint nlin.SI/020950 Mañas M and Martínez Alonso L 2003 Theor. Math. Phys. 1371543 Mañas M and Martínez Alonso L 2004 Phys. Lett. A 320383
[6] Ferapontov E V 2002 J. Phys. A: Math. Gen. 35 6883-92
Ferapontov E V and Khusnutdinova K R 2003 On integrability of (2+1)-dimensional quasilinear systems Preprint nlin.SI/0305044
Ferapontov E V and Khusnutdinova K R 2003 The characterization of two-component ($2+1$)-dimensional integrable systems of hydrodynamic type Preprint nlin.SI/0310021
[7] Tsarev S P 1990 Iz. AN USSR Math 541048
[8] Gibbons J and Tsarev S P 1989 Phys. Lett. A 135167 Gibbons J and Tsarev S P 1999 Phys. Lett. A 211263
[9] Guil F, Mañas M and Martínez Alonso L 2003 J. Phys. A: Math. Gen. 364047
[10] Guil F, Mañas M and Martínez Alonso L 2003 J. Phys. A: Math. Gen. 366457
[11] Kodama Y and Gibbons J 1990 Integrability of the dispersionless KP hierarchy Proc. 4th Workshop on Nonlinear and Turbulent Process in Physics (Singapore: World Scientific)
[12] Kodama Y and Gibbons J 1989 Phys. Lett. A 135167
[13] Konopelchenko B and Martínez Alonso L 2001 Phys. Lett. A 286161 Konopelchenko B and Martínez Alonso L 2002 J. Math. Phys. 433807 Konopelchenko B and Martínez Alonso L 2002 Stud. Appl. Math. 109313
[14] Konopelchenko B and Moro A 2004 J. Phys. A: Math. Gen. 37 L105 Konopelchenko B and Moro A 2004 Integrable equations in nonlinear geometrical optics Preprint nlin.SI/0403051
[15] Krichever I 1994 Commun. Pure. Appl. Math. 47437 Krichever I 1992 Commun. Math. Phys. 143415
[16] Kupershmidt B 1985 Commun. Math. Phys. 9951 Kupershmidt B 1990 J. Phys. A: Math. Gen. 23871
[17] Mañas M 2004 On the r th dispersionless Toda hierarchy I: Factorization problem, symmetries and some solutions J. Phys. A: Math. Gen. 379195 (Preprint nlin.SI/0404022)
[18] Mañas M, Martínez Alonso L and Medina E 2002 J. Phys. A: Math. Gen. 35401
[19] Martínez Alonso L and Mañas M 2003 J. Math. Phys. 443294
[20] Takasaki K and Takebe T 1991 Lett. Math. Phys. 23205
[21] Takasaki K and Takebe T 1995 Rev. Math. Phys. 7743
[22] Takasaki K and Takebe T 1992 Int. J. Mod. Phys. B 7889 Takasaki K 2002 Lett. Math. Phys. 59157
[23] Wiegmann P B and Zabrodin A 2000 Commun. Math. Phys. 213523 Mineev-Weinstein M, Wiegmann P B and Zabrodin A 2000 Phys. Rev. Lett. 845106

